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Summary 

Human operators of complex dynamic sys- 
tems can experience difficulties supervising 
advanced control automation. One remedy is 
to develop intelligent aiding systems that can 
provide operators with context-sensitive advice 
and reminders. The research reported herein 
proposes, implements, and evaluates a meth- 
odology for activity tracking, a form of intent 
inferencing that can supply the knowledge 
required for an intelligent aid by constructing 
and maintaining a representation of operator 
activities in real time. The methodology was 
implemented in the Georgia Tech Crew Activ- 
ity Tracking System (GT-CATS), which pre- 
dicts and interprets the actions performed by 
Boeing 7571767 pilots navigating using 
autopilot flight modes. This report first 
describes research on intent inferencing and 
complex modes of automation. It then pro- 
vides a detailed description of the GT-CATS 
methodology, knowledge structures, and proc- 
essing scheme. The results of an experimental 
evaluation using airline pilots are given. The 
results show that GT-CATS was effective in 
predicting and interpreting pilot actions in real 
time. 

1. Introduction 
Human operators increasingly use automation 
to control complex dynamic systems. 1 Such 
operators function as supervisory controllers, 
monitoring and intermittently programming 
the automation to control the task environ- 
ment. As computer technology has become 
more powerful, more aspects of the operator’s 
former control task have become automated, 
and the automation itself has become more 
complex. The proliferation of automation has 
changed the human supervisory controller’s 
task. Humans now make less frequent-albeit 
more complicated-inputs to the automation, 

1 The term “complex system” is used herein to refer to 
engineered systems controlled by well-trained operators 
that are assumed to be well-motivated, and for which 
system state data are available via computer. 

and must monitor more complex information 
about both the controlled process and the 
operation of the automation (refs. 8-9). 
This transformation has placed new demands 
on the human operator. The operator must 
understand how automation is to be used in 
light of the current operating situation; the 
operator must be able to trade off operational 
objectives as necessary to use the automation 
effectively; and, the operator must be able to 
manage the monitoring and mental book- 
keeping required to assess the situation cor- 
rectly and “stay ahead” of the automation 
(ref. IO). If the operator experiences difficul- 
ties meeting one or more of these 
demands-in times of high workload or 
abnormal operation, for example-he or she 
becomes susceptible to errors that can com- 
promise system safety (ref. 11) 
Breakdowns in human-machine interaction 
have motivated a broad spectrum of research 
that attacks the problem from three interre- 
lated angles: improving the design of the 
human-machine interface, improving operator 
training, and devising ways to aid the operator. 
For example, some research seeks to present 
information in a way that emphasizes impor- 
tant features of the system crucial to operator 
understanding (ref. 12), or to dynamically 
tailor displayed information to the situation at 
hand (refs. 13 and 14). Other research 
addresses improved training for operators of 
complex systems (refs. 7 and 15). Still another 
approach is adaptive aiding (refs. 16-18). 
Adaptive aiding combines dynamic task allo- 
cation, to keep operators “in the loop,” with 
error-resistant, error-tolerant systems to keep 
operators from making errors wherever possi- 
ble, and to detect and alleviate the effects of 
errors that do occur (refs. 8 and 19). 
One way to foster error tolerance and support 
dynamic task allocation is to develop intelli- 
gent operator aiding systems that monitor the 
human-machine interaction and supply timely 
advice and reminders to the operator (refs. 4 
and 20). This research addresses a facet of 
such systems-referred to as operator’s asso- 
ciates (ref. 4), or intelligent operator assistants 
(ref. 21). The USAF/ Lockheed Pilot’s Associ- 
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ate is an example of the operator’s associate 
concept designed for fighter pilots (refs. 2, 22 
and 23). The Pilot’s Associate and other 
operator’s associate systems construct and 
maintain a dynamic, context-specific repre- 
sentation of what the operator is doing-and 
will be doing-and why. Such a representation 
provides the knowledge required for the asso- 
ciate to monitor the human operator to detect 
errors and provide assistance. 
Developing reliable dynamic representations 
of operator activities to support human- 
machine interaction is the focus of intent 
inferencing (refs. 4 and 18). Activity trucking 
is a type of intent inferencing explored in‘this 
research, so called because it focuses not on 
the psychological aspects of human intent, but 
on the context-specific manifestations of 
operator intentions as overt control activities. 
By tracking operator activities-like one 
human monitoring and interpreting another 
human’s behavior-an operator’s associate 
can maintain a dynamic representation of 
operator activities which can be used to sup- 
port human-machine interaction. 
As proposed in this research, activity tracking 
has four elements. The first element is the 
capability to hypothesize how the operator will 
perform the next set of activities in the current 
operational setting. The second is the capabil- 
ity to confirm the hypotheses based on actual 
operator actions. The third is the capability to 
interpret unexpected operator actions that 
were not hypothesized, to determine whether 
the unexpected operator actions are errors, or 
part of an alternative, but valid, method for 
using the automation. Finally, activity tracking 
includes the capability to identify missed or 
late operator actions so that possible errors of 
omission can be detected. 
This research proposes, implements, and 
evaluates a methodology for activity tracking. 
The methodology embodies a theory that, first, 
establishes conditions on the types of knowl- 
edge that must be available in a domain to 
support activity tracking. Specifically, the 
methodology applies to engineered systems in 
which information about the state of the sys- 

tem, goals of the operator, and standard oper- 
ating procedures is available. 
Second, the theory underlying the activity 
tracking methodology establishes an organi- 
zational structure for the available domain 
knowledge. The activity tracking methodology 
uses a model of human-machine interaction 
based on the Operator Function Model ( O m )  
(refs. 1 and 24) to represent knowledge about 
how operators use automation. This enhanced 
OFM is called an OFM for systems with 
Automatic Control Modes (OFM-ACM), in 
deference to the role modes play in complex 
automation (ref. 25). 
Third, the methodology is theoretically 
founded on the capability to transform the 
available knowledge of the state of the con- 
trolled system and goals of the operator into 
knowledge for predicting activities represented 
in the OFM-ACM. Using the conditions on 
available knowledge, this capability provides a 
flexible means of constructing a representation 
of current and future operator activities. 
Fourth, the activity tracking methodology 
embodies a theory for processing the available 
knowledge. The theory provides that updated 
knowledge about the state of the controlled 
system can be used to interpret unexpected 
operator actions. In addition, it offers a means 
by which the required knowledge can be used 
to track operator activities in real time. Real- 
time interpretation of operator activities 
enables an operator’s associate to supply 
timely advice and reminders. 
The processing architecture was used to 
implement the methodology in a computer 
system called GT-CATS (Georgia Tech Crew 
Activity Tracking System). The thesis of this 
research is that the GT-CATS architecture can 
construct a real-time representation of opera- 
tor automation usage. As a proof-of-concept, 
GT-CATS was implemented and evaluated in 
the domain of glass cockpit aircraft. The 
results of the evaluation showed GT-CATS to 
be effective in tracking pilot activities. 
The remainder of this document is organized 
as follows. Chapter 2 discusses the potential 
impact of activity tracking and its roots in 
intent inferencing research. Chapter 3 
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describes human-automation interaction, with 
a focus on modes of automation and the errors 
modes engendered as identified through 
research on glass cockpit aircraft. The GT- 
CATS methodology is not limited to modal 
systems, and is in no way bound to glass cock- 
pit automation; however, complex systems with 
multiple modes present a particularly chal- 
lenging domain for the application of activity 
tracking, and glass cockpit automation is a 
well-studied example of such systems. 
To support later discussions, Chapter 3 opens 
with a general description of the Boeing 
757/767 glass cockpit intended to familiarize 
the reader with noteworthy displays, controls, 
and modes. 

Chapter 4 describes the GT-CATS methodol- 
ogy and computer architecture, including the 
OFM-ACM. Chapter 5 describes the imple- 
mentation of GT-CATS for the glass cockpit. 
Chapter 6 describes the GT-CATS evaluation 
study. It opens with a discussion of the evalua- 
tion methods applied by other researchers, 
then presents the GT-CATS evaluation proce- 
dure in detail. The results of the evaluation are 
given in Chapter 7, including the insights 
gained from micro-analysis of action-by- 
action activity tracking outcomes. Chapter 8 
summarizes GT-CATS research and its find- 
ings, and outlines important avenues for 
further research. 

. 
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2. Intent Inferencing 

Introduction 
In the domain of complex dynamic systems, 
intent inferencing can be thought of as the 
process of inferring the intentions of a human 
operator controlling a complex system from 
the state of the system and observed operator 
actions. A computer system that can infer 
operator intent can then use this representation 
to support “intelligent” human-machine 
interaction (refs. 4, 18, and 26-29). Aid, 
advice, or reminders are intelligent when based 
on a model of what the operator i s  doing and 
why. Activity tracking is a form of intent 
inferencing that focuses on explanation of 
operator activities without addressing the pre- 
cise psychological nature of the formation of 
human intentions. 
This chapter summarizes intent inferencing 
research as conducted in the area of human 
operators responsible for the safety and 
effectiveness of complex dynamic systems. It 
first describes the motivations behind previous 
inquiries into the application and feasibility of 
intent inferencing. The chapter then describes 
models that can effectively support intent 
inferencing; such models represent both the 
physical and cognitive aspects of the opera- 
tor’s task in the domain of interest. Finally, the 
chapter presents a review of intent inferencing 
and related research. 

Motivations for intent inferencing 
and related research 
This section briefly describes several avenues 
of human-machine systems research that have 
substantiated the need for intent inferencing. 
All were developed in response to the trans- 
formation of the operator’s role in increas- 
ingly automated complex systems. Although 
the use of advanced technology imposes new 
demands on operators, human abilities to 
anticipate and adapt to novel or uncertain 
situations preclude replacing human operators 
in complex dynamic systems (ref. 30). The 
research discussed in this section attempts to 

improve human-machine interaction while 
honoring the significance of both the human 
operator and the computer components (Le., 
machine agents) of the controlled system. 

Intelligent Decision Support Systems 
Intelligent decision support systems (IDSSs), 
in which the human operator can allocate tasks 
to a machine agent, were one early attempt to 
wed human versatility and the analytical power 
of computers (ref. 31). IDSSs are expert sys- 
tems. In the IDSS paradigm, humans guide the 
problem-solving process by supplying infor- 
mation to the IDSS, and the IDSS performs the 
complex reasoning required to solve the 
problem. Through a sort of question and 
answer session, human operators supply the 
information necessary for the IDSS support 
complex tasks, such as fault diagnosis. 
However, studies exposed deficiencies in the 
human-machine interaction fostered by IDSSs. 
The allocation of tasks between human and 
machine is designed into the system, and is 
therefore static. The problem solving process 
could be led astray by unanticipated variabil- 
ities, uncertainty about applicable types of 
knowledge, and deficiencies in the under- 
standing between human and IDSS (refs. 
3 1-34). To enhance human-machine interac- 
tion, researchers instead sought ways to use 
computer technology to develop cognitive 
tools that allow the human operator to effec- 
tively exploit machine capabilities in concert 
with his or her own (refs. 35-37). 

Adaptive aiding 
The concept of adaptive aiding in a sense fore- 
saw the difficulties that IDSSs would encounter 
(refs. 16 and 17). Adaptive aiding is founded 
on two concepts: dynamic task allocation and 
error tolerance. Dynamic task allocation can 
enhance human-machine interaction by using 
the current operating context to determine 
how tasks should be allocated to human and 
machine agents, and to keep the human 
operator “in the loop.” Error tolerance is a 
property of the machine agent that can 
enhance human performance by detecting 
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errors and helping to correct them or 
minimize their effects. 
Both dynamic task allocation and error toler- 
ance can benefit from intent inferencing. By 
incorporating an intent inferencing element, a 
machine agent can use its knowledge about the 
operator’s current objectives in order to iden- 
tify tasks it can support, and to distinguish 
operator errors from valid actions. 
Hammer, Rouse, and Rouse developed an aid 
to assist pilots in the detection and remediation 
of procedural errors (refs. 26 and 27). The aid 
used a hierarchical script of flight procedures 
to identify correct actions, ommitted actions, 
and inexplicable actions (i.e., actions that did 
not fit into any scripts). A display was devel- 
oped that dimmed each procedural step as it 
was performed. 
To evaluate their computer aiding concepts, 
simulator data from four two-person crews 
flying a twin engine aircraft were collected for 
three scenarios: a normal flight and two 
emergency flights that involved engine and 
landing gear status indicator failures. The data 
included aircraft state variables, discrete 
operator actions, and transcripts of verbal crew 
communication. These data were used as off- 
line input to the computer aid. In a compari- 
son between hard-copy procedures checklists 
and the computer-based procedures aid, the 
computer-based system detected and virtually 
eliminated procedural errors. Thus, the 
research demonstrated the potential usefulness 
of computer-based cockpit aiding systems. 

Human-centered automation 
Billings’ (ref. 8) concept of human-centered 
automation is a philosophy for automation 
design that incorporates the need for intent 
inferencing. The philosophy is intended to 
address common shortcomings of automation 
in complex systems. Automation is often tech- 
nology-driven: new technology enables some 
aspect of the human operator’s task to be 
automated, but takes the human operator “out 
of the loop” in the process. Human-centered 
automation seeks to keep the operator in 
command, which in turn requires that the 
operator is informed and involved with 

monitoring the automation (ref. 14). As con- 
ceived by Billings, human-centered automa- 
tion requires cross-monitoring, where both 
human and machine agents monitor the 
others. For cross-monitoring to be effective, 
each element in the system must have knowl- 
edge of the others’ intent; thus, an intent 
inferencing component is a critical element of 
human-centered automation. 

Operator’s associate 
An operator’s associate is a machine agent that 
acts like a human assistant-subordinate and 
cooperative with respect to the operator, able 
to assume responsibility for tasks on demand, 
and able to monitor and anticipate situations 
and events (refs. 4, 21, 38, and 39). Intent 
inferencing is vital for providing the opera- 
tor’s associate with an understanding of what 
the operator is doing-and will be doing-and 
why. Using this knowledge, the control com- 
ponent of the operator’s associate can provide 
timely advice and reminders, detect and reme- 
diate errors, and carry out tasks allocated to it 
by the human operator. Thus, the concept of a 
computer-based operator’s associate encom- 
passes both adaptive aiding and supporting the 
cognitive activities of the operator. 
Researchers have pursued the operator’s asso- 
ciate concept along several broad fronts. For 
example, the DAFWA-funded USAFLockheed 
Pilot’s Associate system is an operator’s asso- 
ciate for fighter pilots (refs. 2, 22, and 23). 
The Pilot’s Associate includes an intelligent 
pilot-vehicle interface that uses inferred intent 
to predict pilot performance, required 
resources, and the consequences of errors. The 
review of research later in this chapter dis- 
cusses this and other important research on 
operator’s associate systems in detail. 

Intelligent information displays 
Another application for intent inferencing 
systems is to guide when and how to display 
information to the human operator. For 
example, researchers have found evidence that 
information requirements of operators vary 
according to the plans they are currently pur- 
suing (ref. 40). Operator performance can be 

- 
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supported by configuring displays according 
to the information requirements of a particular 
plan; the plan operators are currently pursuing 
can be determined through intent inferencing. 
The inteIligent pilot-vehicle interface in the 
Pilot’s Associate, for example, incorporates 
intelligent information displays as one means 
of aiding pilots. 

Intelligent tutoring systems 
Another important application of intent infer- 
encing is intelligent tutoring systems. Due to 
the prohibitive cost of ‘complete’ training, 
training programs typically result in operators 
that are far from experts-at best they are 
“trained novices” (ref. 15). Intelligent tutor- 
ing systems can help eliminate some of the on- 
the-job training normally required to achieve 
expert performance. 
Intent inferencing can support dynamic stu- 
dent and expert models in intelligent tutoring 
systems (ref. 7). A student model that uses 
intent inferencing to understand the actions of 
the trainee can guide the instructional process. 
In addition, expert models can benefit from 
the predictive capabilities provided by intent 
inferencing. Rather than using “canned” 
scenarios that limit the scope of training, an 
expert model can predict what activities the 
operator should perform in varied contexts, 
thereby extending training to reflect real- 
world situations automatically. 

Operator models for intent 
inferencing 
Intent inferencing systems require domain- 
specific knowledge about the operator’s task 
and the controlled system, and a means for 
controlling processing of this knowledge. 
Using updated information about the state of 
the system and the actions the operator per- 
forms, an intent inferencer processes knowl- 
edge about the operator’s task to produce a 
dynamic representation of operator activities 
in the current operational context. 
Human-machine systems research has estab- 
lished the importance of well-defined models 
of the human operator (refs. 1 and 16). A 
variety of models of the human operator have 

been developed; different models can be char- 
acterized conceptually by their purpose, 
structure, content, and specificity (ref. 41). 
Descriptive models include Rasmussen’s (ref. 
42) decision ladder and abstraction hierarchy; 
the OFM (ref. 1) and goal-means network (ref. 
36), on the other hand, exemplify normative 
models. Model structure can be computational, 
as with control theoretic models (ref. 43), dis- 
crete control models (ref. 44), and OFMs-or 
conceptual, like the abstraction hierarchy. The 
content of models ranges from mental repre- 
sentations of the task derived from psychology 
(refs. 12, 45, and 46), to engineering models 
of overt operator activities (e;g., the 
Om)-the type of model often referred to 
generally as an “operator model.” Finally, 
models can be specific to a particular device, a 
class of machines (Le., task models), or they 
can focus on cognitive processes independent 
of the machine agent. 
Cognitive engineering models of the operator 
that are capable of dynamically and computa- 
tionally representing salient physical and cog- 
nitive aspects of the operator’s task in the 
domain of interest provide one way to support 
effective human-machine interaction in com- 
plex systems (ref. 24). Given the current sys- 
tem state and system goals, the model repre- 
sents what interventions the operator should 
undertake and why, along with the control 
options the operator can exercise to attain the 
desired system state. The model also specifies 
a hierarchy of activities, in order to represent 
the complexity of the system in a manner that 
is cognitively compatible with the operator’s 
actual representation of the task. Thus, to 
effectively provide the intelligence necessary 
to aid the operator (via intent inferencing), a 
model should be both normative, in that it can 
generate expectations of operator activities, 
and interpretative, in that it can ‘understand’ 
operator activities in the current context. 
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Figure 1. A generic OFM. 

Operator Function Model 
The Operator Function Model (OFM) is an 
example of a model developed towards these 
ends (ref. 1). The OFM (figure 1) is a 
hierarchical-heterarchical network of finite- 
state automata, based on the discrete control 
models of Miller (ref. 44). Nodes in the net- 
work represent operator activities; arcs repre- 
sent enabling conditions that initiate or termi- 
nate operator activities as dictated by system 
events or the results of other activities. These 
enabling conditions are non-deterministic in 
that they identify a set of activities plausible 
for the current context, rather than a unique 
next activity. 
The OFM hierarchy represents how operators 
might decompose control functions, from 
high-level functions down to individual man- 
ual or cognitive actions. The OFM heterarchy 
represents collections of activities at a particu- 
lar level in hierarchy that are performed 
concurrently-a feature that enables the OFM 
to represent how operators dynamically 

coordinate activities and focus attention. Thus, 
the OFM provides a flexible framework for 
representing operator activities in complex 
systems (refs. 1 and 24). Chapters four and 
five discuss enhancements to the OFM that led 
to the OFM for systems with Automatic Con- 
trol Modes (OFM-ACM) used in this research. 

Figure 2. Generic Plan-Goal Graph. 

Plan-Goal Graph 
Another model that can support intent infer- 
encing is a Plan-Goal Graph (PGG) (ref. 29). 
A PGG is a network of plans and goals. Unlike 
the OFM, the PGG derives from research in 
psychology and artificial intelligence using 
Shank and Abelson's (ref. 47) concepts of 
scripts, plans, and goals as cognitive structures 
of understanding (ref. 48). 
In a PGG (figure 2), each high-level operator 
goal is decomposed into a set of plans that can 
be used to achieve it. Plans are then decom- 
posed into subgoals, which in turn are decom- 
posed into lower-level plans. The lowest-level 
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plans in the PGG are decomposed into the 
individual operator actions required to execute 
each plan. Plans may also have scripts that 
represent loosely ordered sequences of 
required actions. With this structure the PGG 
can represent the options available to the 
human operator in a complex system. 
The links in a PGG are important for repre- 
senting system-dependent constraints on rela- 
tionships between plans and the goals they 
satisfy. Feasibility constraints express the 
range of system parameters within which a 
plan may be effectively used to satisfy a goal. 
Ambiguity constraints, so called because they 
are used to resolve the ambiguity present when 
a plan has multiple goals, represent the nor- 
mative approach to satisfying a goal given the 
values of current system parameters. In addi- 
tion to the constraints represented by the links 
in the PGG, each plan and goal has a list of 
other plans or goals with which it is mutually 
exclusive. Such an exclusion can be associated 
with values of pertinent system parameters, if 
required. These constraints, together with its 
structure, enable the PGG to represent the 
domain knowledge associated with the con- 
trolled system. The PGG is similar to the OFM 
in that it represents operator activities in a 

hierarchy, and contains information about 
normative activities given current system state. 

Intent lnferencing and related 
research 
This section describes intent inferencing 
research in terms of the models and process- 
ing used, the domain of application, and the 
implications for future research. In cases 
where an intent inferencing system has been 
implemented in an intelligent aiding and/or 
training system, this work is also discussed. 

0FMSpI-t 
The Operator Function Model expert system 
(OFMspert) research program focuses on the 
design of an operator’s associate for complex 
dynamic systems (ref. 4). OFMspert was 
implemented in the context of a satellite 
ground control system (ref. I). OFMspert uses 
the OFM as the source of knowledge about the 
controlled system and related operator func- 
tions. OFMspert’s intent inferencing compo- 
nent, the Actions Interpreter (ACTIN), is 
responsible for maintaining a dynamic, con- 
text-specific representation of current best 

Controlled 
High Level Controller 

(Event Queue) 

Current Problem 
Enhanced I 

r 
, 1 

Workstation I 
Description 

Figure 3. Generic OFMspert architecture. 
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hypotheses about operator activities. Other 
components are responsible for providing 
system-state knowledge, and controlling real- 
time processing (figure 3). 
ACTIN was implemented as a blackboard sys- 
tem (ref. 49). Given system state information, 
ACTIN posts functions, subfunctions, and 
tasks from the OFM on its blackboard. As 
OFMspert detects operator actions, they too 
are posted on the blackboard and linked to 
every task they can support according to the 
OFM. These functions, subfunctions, tasks, and 
actions represent the inferred intent of the 
operator (figure 4). An important property of 
OFMspert’s intent inferencing process is 
maximal connectivity; actions are interpreted 
to support as many tasks as possible. In this 
way, OFMspert explains operator actions in 
terms of all feasible tasks given the current 
system state. 
Once actions have been linked to the specific 
task(s) they can support, ACTIN assesses the 
blackboard. The blackboard knowledge 
sources check to to ensure that constraints on 
the temporal ordering of actions involved in 
procedures, and constraints on the semantic 

content of actions that have values associated 
with them are all satisfied. For example, an 
action to replace a particular piece of equip- 
ment is constrained by the availability of the 
replacement equipment. Blackboard knowl- 
edge sources check to ensure that the replace- 
ment equipment is available. Thus, the assess- 
ment procedure provides the final ‘under- 
standing’ of operator actions in OFMspert. 

ALLY 
OFMspert’ s understanding capabilities were 
subsequently augmented with control capa- 
bilities, and the capability to use inferred 
intentions to guide user interaction. The 
resulting operator’s associate, called ALLY, 
was empirically evaluated by comparing the 
performance of one satellite ground controller 
using ALLY to the performance of a team of 
two human controllers (ref. 38). No significant 
performance differences were found, which 
provides empirical evidence for the efficacy of 
an operator’s associate. 

I 1  Functions 

Figure 4. ACTIN (Actions Interpreter)-a dynamic, hierarchical representation of operator 
intentions 
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GT-MOCA 
A second extension to OFMspert research is 
the Georgia Tech Mission Operations Coop- 
erative Assistant (GT-MOCA). GT-MOCA is 
an operator’s associate designed according to a 
theory of human-computer cooperative prob- 
lem solving that embodies five principles: 
human authority, mutual intelligibility, open- 
ness and honesty, management of trouble, and 
multiple perspectives (ref. 39). GT-MOCA 
uses the ACTIN intent inferencing module to 
provide an interactive, inspectable model of 
expected operator’s activities, along with con- 
text-specific reminders. Through empirical 
evaluation, these features were shown to pro- 
mote improved performance. Furthermore 
operators received it positively, supporting 
the claim that the design principles GT- 
MOCA embodies are valid. 

GT-VITA 
The Georgia Tech Visual and Inspectable 
Tutor and Assistant (GT-VITA) uses the OFM 
and OFMspert to structure student and expert 
models for an intelligent tutoring system (ref. 
7). GT-VITA uses these models to control 
student interaction with the tutor. An imple- 
mentation of GT-VITA was empirically evalu- 
ated using actual NASA satellite ground 
controllers as subjects. GT-VITA was so effec- 
tive that it reduced the estimated training time 
required from three months of on-the-job 
training to just days. It has since become an 
integral part of NASA’s orientation program 
for ground control personnel. In combination 
with GT-MOCA, GT-VITA also conceptualizes 
the tutor-aid paradigm, in which the same 
knowledge structures used to support training 
gradually shape an operator’s associate that 
supports the experienced operator (ref. 50). 

OPAL 
A second important body of intent inferencing 
research centers around OPAL (Operater Plan 
Analysis Logic), an intent inferencing system 
that uses the Plan-Goal Graph to anticipate the 
context-driven activities of the human operator 
(ref. 29). This research was also motivated by 

the need for intelligent aiding systems to 
detect and help remediate errors (ref. 17), and 
to design and control intelligent, intent-driven 
interfaces to complex systems (ref. 18). 
OPAL’S intent inferencing process creates a 
representation of the operator’s current intent 
expressed as active instances of goals, plans, 
and scripts. Initially, a set of active goals and 
plans is identified with the overall mission of 
the operator. As operator actions are detected, 
OPAL first attempts to associate them with 
active scripts. If an action matches an active 
script, OPAL explains the action as supporting 
the procedure that the script represents. If the 
action cannot be explained in this manner, 
OPAL next attempts to use the PGG to deter- 
mine if the action can be explained as 
supporting a known active plan. If not, OPAL 
uses the structure of the PGG and its associated 
constraints to attempt to locate other plans and 
goals that the action can support in the current 
situation. Failing this, OPAL identifies the 
action as a possible error. 
OPAL is similar to OFMspert in several ways. 
First, both use network models that establish a 
hierarchy of operator activities. Both use 
domain-specific conditions specified in the 
model to postulate the activities operators 
should address in the current context. OPAL 
differs from OFMspert in that it uses scripts to 
explain actions involved with procedural 
activities, in the manner of systems designed 
for natural language understanding (ref. 48). 
OFMspert, on the other hand, uses a 
blackboard architecture to maintain a dynamic 
representation of operator activities. Both 
systems assess constraints on operator actions 
in generating explanations. 

USAFLockheed Pilot’s Associate 
OPAL was initially evaluated in the context of 
a small process control system (ref. 29), but 
has since been used as the intent inferencing 
module in the Pilot’s Associate (refs. 2, 22, 
and 23). OPAL’s predictions and explanations 
for operator actions are used as input to an 
intelligent pilot-vehicle interface. The pilot 
vehicle interface uses this information to pre- 
dict the pilot’s performance, to predict the 
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resources (e.g., information, weapons systems) 
the pilot will require, and to classify pilot 
errors and predict their consequences. OPAL 
also supplies input to the tactical planning 
module of the Pilot’s Associate. 
As part of the intelligent pilot-vehicle inter- 
face, the Pilot’s Associate also incorporates 
an information management module that uses 
inferred plans and goals to intelligently man- 
age displays (ref. 3). This system uses OPAL’S 
output as input to an algorithm that selects 
displays based upon the information required 
by the operator. The algorithm selects more 
displays until either all required information is 
presented, or there is no space left on any 
device to display the rest. In the spirit of the 
Pilot’s Associate, a Rotorcraft Pilot’s Associate 
that uses these principles is also under 
development (ref. 5 1). 

Task Support SystedCockpit Task 
Management System 
The Task Support System is another design 
for an intelligent interface based on intent 
inferencing for military pilots (ref. 52). An 
interesting feature of the Task Support System 
is that it employs a distributed model of the 
pilot’s task. Specifically, the Task Support 
System is agent-based, in that it is comprised 
of collection of software objects. System 
agents encapsulate the current state of the 
actual aircraft system or subsystem they repre- 
sent (including cockpit displays and controls), 
along with static knowledge about these sys- 
tems and subsystems. Task agents receive 
information from the system agents, which 
they use in conjunction with internal knowl- 
edge to assist the pilot in performing the task 
they represent. Other task agents use their 
knowledge to coordinate lower-level task 
agents. The agents and the communication 
among agents thereby represents the model of 
the pilot’s task. 
The Task Support System provides several 
types of assistance to the pilot, in accordance 
with Funk and Lind’s (ref. 52) recommenda- 
tions for an integrative pilot-vehicle interface. 
Each task agent determines when its task 
should be initiated, and alerts the pilot if he or 

she is late in initiating it; task agents notify 
system agents representing displays when par- 
ticular information should be displayed, and in 
what mode; pilots can instruct task agents to 
either monitor actions during the task, recom- 
mend actions, or perform the task automati- 
cally; and, task agents provide system alerting 
functions and monitor successful task comple- 
tion. In addition, the Task Support System 
displays active and pending tasks. The Task 
Support System was evaluated against a base- 
line interface and found superior in both 
performance and pilot preference. 
Research on the Task Support System paved 
the way for the Cockpit Task Management 
System (ref. 20). The Cockpit Task Manage- 
ment System is designed to aid the pilot in 
“the process of initiating, monitoring, priori- 
tizing, and terminating tasks (p. 1521)’’ As 
in the Task Support System, system agents and 
task agents were instantiated to represent task 
and domain knowledge in a distributed fash- 
ion. The Cockpit Task Management System 
agents provide pilots with knowledge about 
task state (i.e., latent, upcoming, in-progress, 
suggested, or finished) and task status (i.e., 
satisfactory or unsatisfactory) using color- 
coded displays. Furthermore, this information 
is prioritized to emphasize important tasks. A 
simulator study comparing pilot performance 
with the Cockpit Task Management System to 
performance without it showed the Cockpit 
Task Management System significantly 
improved task completion, and indicated posi- 
tive effects on pilot response time, task priori- 
tization, and control of important aircraft 
parameters. Cockpit Task Management 
System research is being followed by work on 
an Agenda Manager that assists pilots in 
highly automated systems in which most 
lower-level tasks are performed automatically. 

Cockpit Assistant System and Intelligent 
Flight Path Monitor 
The Cockpit Assistant System (CASSY) is 
another pilot’s associate system developed in 
Germany (ref. 53). The Intelligent Flight Path 
Monitor is under development in the United 
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Kingdom (ref. 54). These systems are notable 
for several reasons. First, they draw on 
“human-centered automation” concepts 
developed in the U.S. (ref. 8) as well as work 
on operator’s associates such as the Pilot’s 
Associate, in an effort to produce an opera- 
tor’s associate for commercial airline pilots. 
They use advanced voice interfaces for inter- 
action, and integrate different types of 
modeling techniques (e.g., fuzzy logic, petri 
nets, and neural networks). Both systems are 
being aggressively developed by consortia of 
universities and/or government and industry, 
and like the Pilot’s Associate, both are ambi- 
tiously designed to integrate assistance for a 
full range of aviation problems. CASSY is 
reported to have passed in-flight feasibility 
testing, and cost estimates for commercial 
certification have been calculated to include 
the full re-design of cockpit automation 
required for fully integrated implementation. 
Due to their similarities to the Pilot’s Associate 
discussed above, CASSY and the planned 
Intelligent Flight Path Monitor are not detailed 
here; rather, the point is that European 
researchers have strongly embraced the 
operator’s associate concept, and devoted con- 
siderable resources to its development. Their 
studies have shown it to be promising, and now 
they are actively pursuing the goal of certify- 
ing such systems for use on the flight deck. In 
addition to CASSY and the Intelligent Flight 
Path Monitor, Robson et al. (ref. 54) indicate 
that several other research programs aimed at 
developing operator’s associates are afoot 
elsewhere in Europe; indeed, this has been the 
case for some time (ref. 55) .  

Summary 
This chapter described the concepts of the 
operator’s associate, human-centered automa- 
tion, intelligent interfaces, and intelligent 
tutoring systems. It also described the impor- 
tance of operator models to support such 
systems. Finally it reviewed important opera- 
tor’s associate systems and related systems to 
provide a theoretical and applied foundation 
for this research. 
The next chapter, on modes in complex sys- 
tems, summarizes a considerable body of 
research related to intent inferencing research. 
Problems with modes in complex 
systems-and aviation in particular-have 
contributed to the focus on operator’s associ- 
ates for the cockpit. Furthermore, as the next 
chapter describes, the function of an opera- 
tor’s associate is complicated in situations 
where operators must supervise the operation 
of multiple modes, making effective coordina- 
tion and interaction between the human 
operator and an associate even more crucial. 
While several research projects have explored 
intent inferencing to support intelligent aiding 
systems, extant data are either classified (due 
to their military significance), proprietary, or 
pertinent to tasks that are less complex than 
flight deck mode management. The present 
research therefore seeks to provide publically 
available data on real-time activity tracking 
for a class of systems in which the Pilot’s 
Associate is included. In the process, it posits 
theoretically important properties of the 
proposed activity tracking methodology, and 
demonstrates its effectiveness. 
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3. Modes In Complex Systems 

Introduction 
Modes are an important feature of automation 
in complex systems. Modes have proliferated 
as a useful means of formatting displays, 
entering data, and providing control options to 
the human operator; however, modes can 
contribute to operator confusion. Accidents 
involving glass cockpit aircraft (refs. 56 and 
57)-as well as an abundance of less serious 
mode-related incidents (refs. 58-60)-provide 
grim evidence for this claim. 
Early human factors research on cockpit 
automation addressed a broad range of issues, 
including modes (refs. 61-65). While some 
researchers stressed the importance of com- 
munication, coordination, and cooperation 
among pilots (ref. 66), Wiener’s (ref. 67) 
survey of pilots helped focus attention on 
modes. Wiener found that automation can 
increase workload at times when it is already 
high-evidence of Bainbridge’s (ref. 10) 
“irony of automation”-and characterized 
the automation as “clumsy.” Pilots at times 
fell “behind the airplane,” often wondering 
“What is it doing now?,” “Why is it doing 
it?;” and “What’s it going to do next?” 
A survey and subsequent simulator study of a 
different glass cockpit aircraft sought reasons 
for “automation surprises,” and areas of mis- 
understanding (ref. 68). The research identi- 
fies several mode-related difficulties, including 
mode availability or disengagement, tracking 
automatic mode transitions, Vertical Naviga- 
tion (VNAV) mode target values and logic, 
infrequently used modes, and selecting from 
multiple modes. Subsequent studies addressed 
pilot “mode awareness” in other glass cockpit 

aircraft (refs. 69 and 70). Again, the research 
indicates the “strong and silent” nature of 
advanced automation can compromise mode 
awareness; the automation can surprise pilots 
by taking unexpected actions, and by failing 
to take expected actions. In some cases, pilots 
experience these problems when they prepare 
a mode for use, then forget to engage it. 
The capability to track operator activities in 
complex systems with multiple modes is an 
important step toward operator’s associates, 
intelligent tutoring systems, and interfaces 
that can effectively neutralize mode-related 
problems. Although GT-CATS’ domain of 
application need not have modes, it recognizes 
this requirement. This chapter provides a 
foundation for understanding modes in com- 
plex systems and the problems they engender. 
The chapter classifies modes, then focuses on 
modes of automation used to control complex 
systems. After characterizing control modes, 
the chapter outlines the demands that modes 
impose on operators’ cognitive resources, and 
how demand-resource mismatches can cause 
breakdowns in human-machine interaction. 
For the reader unfamiliar with ‘glass cockpit’ 
airplane modes used as examples, the chapter 
first provides an overview of the automation 
found in the Boeing 757/767, a typical glass 
cockpit aircraft. 

The Boeing 757/767 glass cockpit 
Glass cockpit aircraft like the Boeing 757/767 
have complex automation that pilots monitor 
using CRT-based (i.e., “glass”) displays. The 
automation requires pilots to supervise the 
operation of multiple modes. A range of 
modes offers specific control advantages, but 
also results in a wide variety of behaviors and 
possible transitions in different contexts of 
which pilots must be aware. 
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Figure 5. 757/767 Mode Control Panel (MCP). 

Like other glass cockpit aircraft, the 757/767 
Autopilot Flight Director System, or 
‘autoflight system,’ has a mode control panel 
(MCP) that allows pilots to coordinate control 
of autopilot, flight director, autothrottle, and 
altitude alert functions. The MCP provides the 
control and display functions used by the crew 
to manage different modes. It houses all the 
switches for selecting modes, as well as knobs 
for selecting heading, altitude, airspeedmach, 
and vertical speed (figure 5). The values 
selected on the MCP are target states to be 
acquired in certain modes. 

Line 
Select 

\ 

Page 
Select 
Buttons. 

Pilots can couple autoflight system operation 
with the Flight Management System (FMS) by 
selecting certain modes on the MCP. The FMS 
provides computerized navigation functions; - 
information programmed in the FMS defines , 

the flight profile the autoflight system follows, 
instead of MCP-selected target values. Both 
757/767 crew members have a FMS Control 
and Display Unit (CDU). The CDU has multi- 
ple display pages that enable flight profiles to 
be viewed and modified, as well as pages for 
addressing other flight management functions 
(figure 6). 
Each crew member also has two “glass” dis- 
plays critical for monitoring the operation of 
the autoflight system and FMS. These are the 
Attitude Director Indicator (ADI) (figure 7) 
and Horizontal Situation Indicator (HSI) 
(figure 8). The AD1 shows the attitude of the 
aircraft, as well as other information important 
for monitoring the operation of selected 
modes. In particular, the AD1 displays Flight 
Mode Annunciators (FMAs) that indicate 
which modes are engaged or armed for auto- 
matic engagement (see figure 7). The HSI 
displays the position of the aircraft relative to 
lateral navigation information programmed in 
the FMS. The HSI enables crew members to 
tailor this information by selecting the desired 
display range and viewing mode. 

Figure 6. 757/767 FMS Control and Display 
Unit (CDU). 
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Figure 7. Attitude Director Indicator (ADI). 

Current Programmed 
Heading LNAV Lateral 

Profile 

Current 

Programmed 
@ Waypoint 

\ 

MCP-selected 
Heading 

Figure 8. Horizontal Situation Indicator (HSI). 

Figure 9 depicts the layout of these controls 
and displays on the flight deck-a configura- 
tion typical of all glass cockpit aircraft. The 
MCP is mounted on the glareshield between 
the two pilots. The ADIs are located on the 

main instrument panel in front of each pilot. 
The HSIs are located below each ADI. The 
CDUs are located on the pedestal between the 
pilots. The location of the CDUs is significant 
because pilots must look down to use them. 
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Figure 9. Glass cockpit layout. 

Boeing 757/767 automation 
This section describes the structure of 757/767 
cockpit automation used for flight control and 
navigation. The first subsection describes the 
autopilot. The second describes how the 
modes are used in particular contexts. 

Autopilot 
Engagement 

Switches 

CGBXjeGE El I 
Figure 10. MCP autopilot engagement 
switches. 

757/767 Autopilot 
During autopilot operation, pilot inputs made 
using the MCP (and, in appropriate modes, the 
CDUs) automatically command the flight 

control surfaces of the aircraft. The 757/767 
has three autopilots, any one of which can be 
engaged for automatic flight control. Pilots 
typically engage an autopilot soon after take- 
off, using switches on the MCP (figure 10). 
Pilots select autopilot and autothrottle modes 
using switches on the MCP. Like the autopilot 
engagement switches, the mode selection 
switches are push-on, push-off switches with an 
integral “on7’ light to indicate a particular 
mode is engaged. An engaged mode can be 
disengaged by pushing a switch again, condi- 
tions permitting. A mode’s switch light goes 
off if disengagement is automatically inhib- 
ited, or if the mode disengages automatically. 
An autopilot can be used in either command 
mode or control wheel steering mode. In con- 
trol wheel steering mode, the autopilot allows 
the pilot to use light force on the yoke to con- 
trol flight manually with assistance from the 
autopilot servos. Command mode provides 
fully automatic flight control. When an 
autopilot is engaged in command mode, the 
autopilot provides all the capabilities required 
to reach and maintain the target values set on 
the MCP. Pilots typically engage an autopilot 
in command mode soon after takeoff. 

- 

- 
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Figure 1 1. MCP Flight Director switches. 

Each crew member has a flight director. When 
engaged, it positions command bars on the 
pilot's AD1 (see figure 7). If the autopilot is 
not engaged, the pilot can still select modes 
and track the flight director command bars 
manually to follow the profile that the autopi- 
lot would command if engaged. Flight director 
switches are also found on the MCP (figure 
1 1). The autopilot and flight director systems 
are commonly used together; the flight direc- 
tor command bars provide a means of verify- 
ing the control actions of the autopilot. The 
autopilot command and control wheel steering 
modes, together with the flight director, pro- 
vide the pilot with several levels of assisted 
flight, from manual flight, to control wheel 
steering, to flight director only, to flight direc- 
tor with control wheel steering, to command 
with or without the flight director. 

The MCP also has a switch for arming the 
autothrottle system (i.e., making it available 
for use) (figure 12). The autothrottle is nor- 
mally engaged prior to takeoff and used 
throughout a flight. The autothrottle system 
automatically controls engine thrust by com- 
manding servos for ea ch throttle. Limits on 
thrust are selected via a separate panel called 
the thrust selector panel. 

Pilots may choose from Climb, Climb-1, 
Climb-2, or Takeoff thrust-each provides a 
specific level of engine performance and 
economy. 

Autothrottle Arm 
Switch 

Figure 12. MCP autothrottle arm switch. 

The autopilot works closely with the 
autothrottle. Different autopilot modes may 
automatically engage specific autothrottle 
modes, in order to control thrust in a manner 
complementary to control of the flight control 
surfaces. This coupling permits the aircraft to 
fly the desired vertical profile. 

757/767 modes 
The 757/767 automation modes are organized 
according to the dimensions of flight they are 
used to control. The autopilot has roll modes 
and pitch modes, and the autothrottle provides 
modes for automatic thrust control. There are 
eight roll modes, ten pitch modes, and seven 
autothrottle modes on the 757/767. Although 
not all of these modes can occur in combina- 
tion (many are used only for brief or abnor- 
mal periods of flight), the 7571767 autoflight 
system provides pilots with numerous control 
options. 
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Figure 13. 757/767 lateral mode MCP controls 
and displays. 

Modes are structured to provide multiple levels 
of automation, just as the autopilot and flight 
director make possible multiple levels of 
assistance. For example, pilots commonly use 
three different roll modes to control lateral 
profile: heading hold (HDG HOLD), heading 
select (HDG SEL), and lateral navigation 
(LNAV) . The area of the MCP dedicated to 
these modes is shown in Figure 13. When the 
HDG HOLD switch is pushed, HDG HOLD 
mode maintains the current heading. HDG SEL 
mode enables the pilot to select a heading on 
the MCP, and acquire the selected heading. 
LNAV offers the highest level of automation. 
LNAV takes input from the FMS to intercept 
and track a programmed lateral profile from 
the aircraft’s origin to destination. 

Modes also differ in the way in which they 
control a specific aspect of flight. For exam- 
ple, vertical speed (VIS) mode is used to climb 
or descend at a selected rate by adjusting the 
aircraft’s control surfaces. V/S is an autopilot 
pitch mode commonly used in combination 
with the autothrottle speed (SPD) mode, which 
adjusts thrust to control airspeed; the V/S-SPD 
mode combination is referred to simply as VIS 
mode. (In later discussions, commonly 
occurring pairs of pitch and autothrottle 

Vertical Sked 
Selector 

Figure 14. MCP controls and displays for V/S 
mode. 

modes are treated together and referred to as 
“vertical axis modes,” or “vertical modes.” 
The mode combination is usually referred to 
by a single name, e.g., a flight level change 
(FL CH) autothrottle mode combined with a 
speed (SPD) pitch mode is referred to as ‘‘E 
CH mode” for parsimony.) Pilots can engage 
V/S mode by pushing the VIS mode switch on 
the MCP. Once V/S mode is engaged, the 
current vertical speed is displayed on the MCP, 
and pilots use the thumb wheel to adjust the 
target vertical speed (see figure 14). 

Whereas V/S mode uses the autothrottle SPD 
mode, flight level change (FL CH) mode uses 
the FL CH autothrottle mode in conjunction 
with the autopilot speed (SPD) mode (i.e., 
there exists a SPD mode for both the autopilot 
and the autothrottle). In FL CH, the autopilot 
adjusts pitch to hold the current airspeed, while 
the autothrottle adjusts thrust to climb or 
descend. Pilots speak of speed being “on 
pitch” in FL CH mode (i.e., speed is con- 
trolled via pitch adjustments), and “on thrust” 
in VIS mode (i.e., speed is controlled via thrust 
adjustments). In both VIS and FL CH mode, 
the MCP airspeed/mach display window allows 
speed to be adjusted (see figure 15). 

- 
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Figure 15. MCP vertical mode controls and displays. 

V/S and FL CH are two of the 757/767’s verti- 
cal modes; the two others are altitude hold 
(ALT HOLD) and vertical navigation 
(VNAV). ALT HOLD is used in a manner 
analogous to HDG HOLD; pushing the MCP 
ALT HOLD switch levels the aircraft at the 
current altitude. Figure 15 shows the MCP 
controls and displays required to use vertical 
axis modes. 
Vertical navigation (VNAV) enables fully 
automatic FMS control over the programmed 
vertical profile. In VNAV mode, autothrottle 
modes are “slaved” to provide the appropri- 
ate thrust control. (“VNAV mode” is a very 
general term, as VNAV can be thought of as 
having multiple .submodes that occur in com- 
bination with different autothrottle modes.) 
VNAV mode is the highest level of vertical 
profile automation, and maximizes fuel econ- 
omy; FL CH, on the other hand, enables fast 
climbs or descents. 
The MCP-selected altitude is one of the most 
important inputs pilots make. Pilots set the 
MCP altitude to the altitude cleared by Air 
Traffic Control (ATC) before engaging a ver- 
tical mode. In fact, if an altitude different from 
the aircraft’s current altitude is not set on the 
MCP, neither FL CH nor VNAV will engage. 
In VNAV, the MCP-selected altitude limits the 
aircraft’s climb or descent, regardless of the 
programmed vertical profile. This gives rise to 

a number of difficulties, including: forgetting 
to set a lower altitude in cruise, so that VNAV 
cannot descend; or, setting an altitude beyond 
a speed/altitude restriction, then inadvertently 
erasing the restriction from :he CDU, so that 
the restriction is ignored on the way to the 
MCP-selected altitude. To further complicate 
matters, VIS can fly away from the MCP 
selected altitude (e.g., an altitude can be 
reached via V/S climb, then a negative vertical 
speed can be used to fly into terrain with no 
altitude protection). Some pilots/airlines stan- 
dardize the use of the MCP-selected altitude, 
requiring that the nearest cleared altitude 
directed by ATC is always set before a vertical 
mode (other than ALT HOLD) is engaged. 
Another automation feature that impacts ver- 
tical mode use in the automatic altitude cap- 
ture (ALT CAP) mode. ALT CAP engages 
automatically, disengaging the vertical mode, 
when the aircraft is approaching the MCP- 
selected altitude (ALT CAP only engages 
automatically, so it has no mode switch on the 
MCP). ALT CAP smoothes the g-forces 
involved with the capture maneuver, then 
ALT HOLD mode engages automatically to 
hold the MCP-selected altitude. These mode 
transitions are tied to the AFDS altitude 
alerting system, which provides visual and 
aural alerts as the aircraft approaches the 
MCP-selected altitude. The altitude alerting 
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system also warns pilots of deviations from 
the selected altitude (e.g., in V/S mode). 

Automation use 
Pilots are trained to use the automation in a 
manner consistent with the philosophy and 
guidelines of the managing air carrier. Guide- 
lines vary slightly among carriers. This sub- 
section describes how the automation is nor- 
mally used following one major carrier’s 
guidelines. It also notes some other mode 
usage techniques that, although not officially 
taught, are widely accepted and used by line 
pilots. 
Automation use begins before takeoff, when 
the pilots program the planned flight informa- 
tion and performance parameters into the 
FMS via the CDUs. Information about the 
flight’s origin and destination airports, 
planned departure procedures and (if known) 
arrival procedures are programmed, along with 
the waypoints to be crossed during the high- 
altitude portions of flight. This information 
defines the lateral and vertical profiles. With 
this information, the autopilot can use infor- 
mation from the FMS waypoint database and 
the aircraft’s inertial reference system to 
navigate in LNAV and VNAV modes. 
Also before takeoff, the pilots turn their flight 
directors on and position the autothrottle 
switch to ARM. This arms the autothrottle in 
takeoff mode-a special purpose mode only 
used for takeoff. HDG HOLD is engaged with 
the runway heading selected on the MCP. To 
takeoff, the pilots advance the throttles and the 
autothrottle assumes control of thrust. At 
rotation speed, one crew member, designated 
the “pilot flying” (PF), rotates the aircraft to 
the pitch indicated by the flight director, and 
holds the heading indicated by the flight 
director. Once airborne, the pilot-not-flying 
(PNF) retracts the landing gear, and begins to 
retract the flaps according a speed schedule 
specified before takeoff. At the point at which 
the aircraft exhibits a positive rate of climb, the 
climb phase of flight begins. 
At 1,000 feet above ground level (1,000 feet 
AGL);the PNF engages a vertical mode to be 

used for climbing, engages the autopilot in 
command mode, and sets the limit thrust on 
the thrust selector panel. The pilots now select 
a vertical mode. Guidelines dictate that if the 
appropriate departure information is pro- 
grammed in the FMS, VNAV should be used; 
otherwise FL CH should be used. Even if the 
FMS is properly programmed, the crew may 
opt to use FL CH in order to expedite the 
climb to a required altitude because of traffic, 
terrain, and/or weather. FL CH mode might 
also be used to enable rapid modifications to 
the flight plan, without reprogramming the 
FMS 
After the autopilot is engaged by selecting 
command mode following takeoff, pilots use 
HDG SEL mode to fly heading(s) specified by 
ATC until the FMS-programmed lateral pro- 
file can be intercepted. When on a heading 
that intercepts the route programmed in the 
FMS, the PNF arms LNAV. Figure 8 shows 
how the HSI looks when an intercept heading 
is selected; the dashed line indicates the MCP- 
selected heading intercepts the FMS pro- 
grammed route. When the FMS route is inter- 
cepted, LNAV mode engages automatically 
and the aircraft turns onto the route. As long 
as the lateral profile is valid, piIots normally 
remain in LNAV mode. If, however, ATC 
requires a different heading, pilots either revert 
to HDG SEL or, if they have time, reprogram 
the FMS. Pilots may also use HDG HOLD to 
maintain a heading-a way to stop a HDG 
SEL turn or prevent a programmed LNAV 
turn. They may also use a heading hold 
submode of LNAV to hold the aircraft’s 
heading after flying beyond the last pro- 
grammed waypoint. HDG SEL, HDG HOLD, 
and LNAV are the roll modes commonly used 
to handle lateral navigation. 
UnIike lateral axis modes, the use of vertical 
modes is closely tied to phase of flight. VNAV, 
in particular, performs differently depending 
on the phase of flight. Figures 16 shows the 
various manifestations of VNAV during the 
climb and initial cruise phases of flight; figure 
17 shows how VNAV works during the cruise- 
to-descent and descent phases. 

- 

- 
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Figure 16. Typical VNAV profile and mode annunciations during climb from VNAV engagement to 
cruise flight. 

The VNAV profile shown in Figure 16 begins 
with initial VNAV engagement following 
autopilot command mode engagement and 
thrust selection after takeoff. If no waypoint 
crossing restrictions are programmed into the 
FMS, pilots fly a default (Le., federally man- 
dated) 250 knot climb profile to the 10,000 
feet mean sea level (10,000 feet MSL) transi- 
tion altitude using the VNAV SPD submode of 
VNAV. In cases where a speedaltitude restric- 
tion is programmed at a waypoint (e.g., cross 
ABC at 250 knots and 6000 feet), VNAV SPD 
changes to VNAV path (VNAV PTH) at the 
altitude restriction and remains in VNAV PTH 
until after the waypoint is passed. 
To comply with a speedaltitude restriction, 
such as that at waypoint ABC in figure 16, 
pilots must exercise care in setting the MCP 
altitude. If ATC cleared the aircraft to 10,000 
feet MSL before takeoff, the crew may 
set10,OOO feet on the MCP and “trust the 
automation” to handle the level-off at the 
programmed crossing restriction and resume 

climbing to 10,000 feet after the waypoint is 
passed. If, however, ATC only cleared the air- 
craft to the crossing restriction, then the crew 
must set 6,000 feet as the cleared altitude on 
the MCP. In this latter case, the autopilot will 
automatically transition through ALT CAP 
mode into ALT HOLD at 6,000 feet, disen- 
gaging VNAV in the process. When ATC 
clears the aircraft to a higher altitude the crew 
must set the new altitude on the MCP and re- 
engage VNAV. Above 10,000 feet VNAV 
commands the most economical thrust setting 
for the climb. Each VNAV climb that is termi- 
nated by an MCP-selected altitude lower than 
the FMS-programmed cruise altitude causes an 
automatic transition to ALT CAP, then to ALT 
HOLD at the MCP altitude. When the aircraft 
reaches the programmed cruise altitude at the 
FMS-computed top-of-climb (TK) point, 
VNAV PTH engages in conjunction with the 
autothrottle SPD mode to maintain the most 
economical cruise speed. 
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Figure 17. Typical VNAV profile and mode annunciations during descent from cruise to approach. 

VNAV PTH is used throughout the cruise 
phase of flight, until the FMS-computed top- 
of-descent (T/D) point is reached (see figure 
17). At the top-of-descent, VNAV PTH mode 
adjusts its associated autothrottle to command 
thrust in such a way to track the programmed 
descent profile. Depending on winds aloft, the 
autothrottle may reduce thrust to idle (IDLE 
mode), hold a specific thrust (THR HOLD 
mode), or add thrust (SPD mode). VNAV PTH 
is used with SPD mode to decelerate prior to a 
transition altitude (i.e., an altitude where a 
speed change is required). In general, VNAV 
uses a FMS-computed path to meet a 
speed/altitude restriction at waypoint on the 
descent profile. In cases where a strong 
tailwind is present, pilots may extend spoilers 
or speed brakes to slow the aircraft. 
During VNAV operation, speed is commanded 
by the FMS; the MCP speed display window is 
blank. If ATC requires a speed that differs 
from the FMS-programmed speed at any time 
while VNAV is engaged, the pilot may engage 
a speed intervention submode of VNAV to 
achieve the desired speed without reprogram- 
ming the FMS. Speed intervention is invoked 
by pushing the MCP speed selector knob to 
display the current airspeed in the MCP speed 

display. The pilot may then adjust the airspeed 
with the speed selector knob (see figure 15). 
To revert to normal VNAV operation, the pilot 
pushes the speed selector knob a second time 
to blank the MCP speed display. 
To use FL CH, the pilot first sets the new 
cleared altitude on the MCP. The pilot then 
presses the FL CH switch (see figure 15). As 
soon as FL CH engages, the MCP speed dis- 
play changes to the current airspeed. The pilot 
should then check and adjust the speed as 
appropriate. In contrast to FL CH, V/S is used 
less often because of its capability to depart 
from a set altitude. It may be used, however, in 
situations where the pilot desires smooth level- 
offs that might cause passenger discomfort if 
left to VNAV or ALT CAP modes. 
Other vertical modes may also be used at top- 
of-descent. Pilots may use V/S to smooth the 
initial descent; they may also use VIS at other 
points in the descent where a gradual descent 
profile is desired. FL CH affords the fastest 
descent to a lower altitude; it is especially 
effective in busy, low altitude situations. 
Besides the major lateral and vertical modes 
described here, several additional special- 
purpose modes are available on the 757/767. 
For example, the glideslope (G/S)  and localizer 
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(LOC) modes enable the glideslope and 
localizer beams to be intercepted on approach. 

Summary of 757/767 automation 
operation 
The 7571767 glass cockpit automation pro- 
vides autopilot modes to control the aircraft’s 
lateral and vertical profile. Lateral profile 
modes include LNAV, HDG SEL, and HDG 
HOLD. Vertical profile modes include VNAV, 
FL CH, V/S, and ALT HOLD. In addition, 
ALT CAP mode engages automaticalIy when- 
ever the aircraft approaches the MCP-selected 
altitude, and smoothes the automatic transition 
to ALT HOLD. As noted above, vertical modes 
are, in actuality, combinations of an autopilot 
pitch mode and an autothrottle mode; where 
insignificant, these distinctions are eliminated 
for parsimony. 
Pilots use four major components in the glass 
cockpit to control and monitor the 7571767 
automation, in addition to standard flight 
instruments. These components are the MCP, 
CDUs, HSIs, and ADIs. The CDUs enable 
information to be programmed into the FMS, 
for use when the autopilot is coupled to the 
FMS in LNAV and/or VNAV modes. Other 
autopilot modes acquire MCP-selected target 
values. In the next section, general classes of 
modes are characterized. 

Classes of modes 
A mode, in general, is a manner of behaving 
(ref. 71). In supervisory control systems, the 
behavior referred to can be either that of a 
display or input mechanism, or that of auto- 
mation used to control the system. Modes 
related to display or input mechanisms are 
called “interface modes” or, using Degani et 
al.’s classification, “formaddata-entry 
modes;” modes that determine the behavior of 
automation used to control the system are 
“control modes.” 

Formatldata-entry modes 
Format/data-entry modes first arose in human- 
computer interfaces; multiple interpretations 

of the same keys were needed to support 
expanding functionality. A boon to interface 
designers, modes were used to group related 
commands into a unit operated on as a whole 
(e.g., enabled or disabled). Modes could “corre- 
spond to a meaningful activity in the user’s 
mind, such as ‘editing,”’ and thereby simplify 
the user’s choices in a given mode (ref. 72, p. 
440). Users, however, were not necessarily 
convinced. Tesler, an advocate of modeless 
interfaces (ref. 73), defined a mode as follows: 

“A mode of an interactive 
computer system is a state of 
the user interface that lasts for 
a period of time, is not associ- 
ated with any particular object, 
and has no role other than to 
place an interpretation on 
operator input (ref. 74, p. 
659). ” 

Modes nonetheless proliferated, and with them 
a growing need to understand their associated 
pitfalls. Mode errors-already identified as a 
category of unintentional, erroneous slips of 
action that occur when humans incorrectly 
assess a situation, then perform an action 
inappropriate for the actual situation (ref. 
75)-took on new meaning as modal devices 
(e.g., text editors) entered widespread use. 
Humans sometimes lose track of which mode 
of the device is currently active, then perform 
an action inappropriate for the mode (ref. 76). 
The vi text editor, with its “command” and 
“insert” modes, is a popular illustration of 
formaddata-entry modes (ref. 59). Another 
example is the degreeshadians mode distinc- 
tion found on calculators. Unlike the vi exam- 
ple, the difference in behavior is not immedi- 
ately evident: when a user inputs 3.14159, it is 
displayed as 3.14159. However, the mode 
affects the interpretation of 3.14159, once this 
value becomes part of a trigonometric calcula- 
tion; it also affects the correct interpretation of 
the result. 
In general, formatldata-entry modes succeed if 
the user can always ascertain the state of the 
system, and if actions available during the 
mode are always relevant to the mode (refs. 74 
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and 77). Early studies on feedback and mode 
usage include that of Monk (ref 78), who 
showed that auditory feedback can help 
reduce mode errors, and Sellen, Kurtenbach, 
and Buxton (ref. 79), who examined the utility 
of visual and kinesthetic feedback. Enduring 
computer interface features such as menus and 
dialog boxes were developed to constrain user 
actions in a particular mode (ref. 80). 

Control modes 
The purpose of control modes is to provide 
the human operator with options for control- 
ling the behavior of automation. A given con- 
trol mode, once engaged, varies or maintains a 
certain set of parameters in a particular fash- 
ion. The dynamic response of the controlled 
system created when a control mode is 
engaged is therefore a factor that occasions its 
use. Automobile cruise control is an example 
of a simple control mode. Control modes have 
five important characteristics (figure 18). First, 
a given control mode has specific engagement 
conditions. The engagement conditions for a 
mode encompass target values that must be set 
so the mode can attain andor maintain them, 
and the mode(s) that are currently in use. For 
example, Flight Level Change (FL CH) mode 
requires the pilot to enter an altitude target on 
the Mode Control Panel (MCP) that is 
different from the current altitude target. 
Vertical Speed (VIS) mode engages if FL CH 
is engaged and the autothrottle is engaged in 
N1 mode. 
Second, some control modes can be armed for 
later automatic engagement. In such cases, 
arming conditions govern when the mode can 
be armed; engagement conditions dictate when 
the mode will engage automatically. For 
example, VNAV can be armed if a valid verti- 
cal profile is programmed and the glideslope 
is not captured. With VNAV armed, if a valid 
MCP altitude target is entered and the aircraft 
intercepts the programmed vertical profile, 
VNAV engages automatically. 
Third, a control mode has disengagement 
conditions that govern when the mode disen- 
gages; a mode may disengage when another 
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Figure 18. Characteristics of control modes. 

mode is engaged, or when critical target value 
information no longer applies. For example, 
the Lateral Navigation (LNAV) mode disen- 
gages when Heading Select (HDG SEL) mode 
engages. VNAV disengages if the pro- 
g r a m e d  vertical profile is no longer valid. 
Fourth, a given control mode has characteristic 
control properties that include the subsystems 
used by or controlled by the mode, the spe- 
cific set of parameters that the mode controls, 
and the manner in which the mode controls 
them. One mode may control the same set of 
parameters as another, but it may use different 
sources of information, and a different means 
of controlling the parameters. These properties 
are, in effect, the reason for including the 
mode in a system’s automation suite-the 
mode provides control properties that are 
desirable in certain operational situations, and 
are not provided by another mode. In addition 
to the specific parameters that a mode controls, 
the level of automatic control excercised over 
the parameters also defines its control 
properties. 

Levels of automation 
Historically, each new element of automation 
and its enabling technology is added to the 
previously existing automation without 
replacing it. This design affords the human 
operator the opportunity to disengage the 
latest additions to the automation and revert to 
a familiar manner of controlling system. It 
also permits safe operation of the controlled 
system should the new automation fail (ref. 8). 
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Today’s complex control automation typicaliy 
follows suit, allowing human operators to 
choose among several levels of automation 
(figure 19). At low levels of automation, the 
operator performs control tasks manually with 
assistance from the automation. Higher levels 
of automation enable the operator to input 
desired system state values for the automation 
to achieve and maintain. The highest levels of 
automation essentially control the system 
autonomously, while the operator monitors the 
automation to ensure desired system per- 
formance. Billings (ref. 8) views these levels as 
a controland management continuum, similar 
to the levels of supervisory control discussed 
by Sheridan (ref. 9). As the level of 
automation increases, direct operator control 
decreases and monitoring responsibilities 
increase (figure 19). 

Higl 

C 
0 
c. 

E 
0 
LI a a 
c 
0 

0) > 
0 
2 

- 

Controiied subsystems and parameters 
In complex supervisory control systems, a 
given system is comprised of several subsys- 
tems. The control properties of a mode are 
also characterized by the subsystems and 
parameters that the mode controls. Modes 
exist for controlling salient aspects of the per- 
formance of each subsystem. In glass cockpit 
aircraft, for example, three aspects (i.e., pitch, 
roll, and thrust) must be controlled simultane- 
ously to achieve the desired flight path. 
Furthermore, several modes are available for 
controlling each of these parameters at each 
level of automation. Pilots can invoke a single 
mode at a high level of automation that 
integrates control over more than one of these 
parameters (e.g., pitch and thrust) to reach a 
desired altitude at a desired time. Alternatively, 
they can use multiple modes concurrently to 
control each 
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Figure 19. Levels of automation (adapted from Billings, (ref. 8)). 
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parameter separately at a lower level of auto- 
mation to maintain, for example, a desired 
altitude and airspeed. 
Thus, the control properties of a mode can be 
thought of as two-dimensional: one dimen- 
sion corresponds to the parameters of each 
sub-system that are controlled; the other 
dimension corresponds to the level of automa- 
tion. At high levels of automation, a single 
mode can control more than one performance 
parameter by automatically “slaving” another 
mode for its own use. VNAV, for example, 
routinely changes the autothrottle mode that 
controls thrust as necessary for its pitch com- 
mands to produce the vertical profile pre- 
scribed by the information programmed in the 
FMS. 
Finally, a control mode is characterized by 
allowable rnodiJications to operation that 
human operators (or other automation) can 
make while the mode is engaged. A mode may 
have submodes that allow temporary specifica- 
tion of target values different from those 
programmed prior to engaging the mode. For 
example, VNAV’s speed intervention submode 
allows pilots to override the target speed 
programmed into the FMS if the desired 
airspeed differs from the programmed value. 
Thus, submodes provide a way for human 
operators to temporarily revert to a lower 
level of automation in which more direct con- 
trol of the system is possible. Submodes can 
also refer to the automatic input of a default 
target value in a situation where the current 
input fails to meet specified criteria (e.g., 
envelope protection in the Airbus A320) (ref. 
8 1). 

Formaudata-entry modes for control 
modes 
The purpose of formaddata-entry modes is to 
provide increased functionality of a system 
while using the same input mechanism and 
display space. The important feature of 
formaddata-entry modes is that the same input 
results in different behavior. In isolation, 
formaddata-entry modes are reactive-nothing 
happens until the operator performs another 
action. Control modes, on the other hand, are 

proactive in that they automatically transform 
the controlled system. 
Operator interfaces to control modes in com- 
plex systems, however, routinely incorporate 
formaddata-entry modes (e.g., to allow input 
of target values, and configure displays for 
monitoring the automation). This relationship 
imparts a proactive quality to the formaddata- 
entry modes. Mode errors related to 
formaddata-entry modes can propagate to 
create control problems unbeknownst to the 
operator-erroneous inputs that the operator 
would usually discover are immediately 
honored by associated control mode. Thus, 
while this research is concerned primarily with 
control modes, the importance of formaddata- 
entry modes should not be understated. 

- 

Mode structure 
The characteristics of individual control 
modes give rise to specific relationships 
between modes. Each subsystem may have its 
own set of modes, and therefore the modes of 
a given subsystem can interact with the modes 
of another. Degani et al. (ref. 59) use the term 
mode structure to refer to the hierarchy of 
modes in a system, the transitions among 
modes and associated transformations in the 
controlled system, and the interactions 
between modes of different sub-systems. The 
hierarchy of modes in a system derives from 
the characteristics of the individual modes and 
the level of automation at which they operate. 
Interestingly, this concept of mode structure is 
little changed from that embraced by early 
research on formaddata-entry modes: “The 
natural relationship among these modes gives 
the space of modes its structure, which governs 
the allowable transitions between the various 
modes (ref. 72, p. 440).” 

. 

Mode transitions 
Mode transitions are an important facet of 
mode structure. Degani et al. (ref. 59) state 
that a mode transition can result from three 
types of input: manual, automatic, or auto- 
matic/manual. A related view of mode transi- 
tions is offered by Vakil et al. (ref. 81). They 
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also identify three types of mode transitions: 
commanded, uncommanded, and auto- 
matic/conditional. The difference appears to 
be that Degani et al. characterize the inputs 
required to transition to the mode, while Vakil 
et al. characterize the transition itself. 

For purposes of this research, there are four 
types of mode transitions. First, manual mode 
transitions are those that can only be directly 
and immediately effected by the human 
operator. For example, a transition to HDG 
SEL can only occur directly as a result of a 
pilot pressing the HDG SEL engagement 
switch. Second, automatic mode transitions are 
those that only occur automatically as a result 
of some target state being attained. For exam- 
ple, a transition to Altitude Capture (ALT 
CAP) mode to capture a set target altitude only 
occurs automatically; no engagement switch 
exists for this mode. 
A third type of mode transition is 
automatidmanual. Automatic/ manual mode 
transitions are those that can occur either as a 
result of pilot input, or attainment of a specific 
target state. An example is a transition to 
Altitude Hold (ALT HOLD) mode, which 
occurs automatically following the altitude 
capture maneuver, or can be effected immedi- 
ately by the pilot to hold the current altitude 
by pressing the ALT HOLD engagement 
switch. 
Fourth, conditional mode transitions refer to 
modes that can be armed for later engagement, 
or engaged immediately if the target state 
conditions are already met at the time of input 
from the human operator. An example is 
LNAV, which can be armed to intercept the 
lateral profile programmed in the FMS, or can 
engage immediately if the aircraft happens to 
be on the programmed profile already when 
the pilot presses the mode switch. 
For completeness, a fifth type of mode transi- 
tion is one that cannot occur because the 
engagement conditions for the mode are not 
met (or the disengagement conditions for the 
current mode are not met), regardless of 
whether the human operator attempts to 
engage the new mode. For example, FL CH 

will not engage unless the pilot first enters an 
MCP target altitude different from the present 
altitude; attempting to engage FL CH without 
first setting a new altitude constitutes a 
(benign) pilot error. 

Base-modes and macro-modes 
Vakil et al. (ref. 81) provide an additional per- 
spective on mode structure by distinguishing 
between base-modes and macro-modes. Base- 
modes simply maintain an invariant set of tar- 
gets, while macro-modes consist of a linked 
sequence of base-modes. Because each base- 
mode in the macro-mode has its own set of 
targets, the macro-mode, in effect, has a set of 
targets which vary over the course of the its 
operation. They offer the autoflight system 
Autoland sequence as an example of a macro- 
mode, in which automatic transitions from a 
vertical mode, to Glideslope capture, to Flare, 
and finally to Rollout occur. Another example 
is a standard altitude capture maneuver, in 
which the aircraft transitions from the mode 
used to change altitude, to ALT CAP, and 
finally to ALT HOLD at the desired altitude. 
Sherry, Youssefi, and Hynes (ref. 82), in their 
specification of a formalism for the develop- 
ment of next generation automation, provide a 
related view. They first define primitive modes, 
then construct supermodes from the primitive 
modes. This approach holds promise for 
designing mode structures that are mathemati- 
cally consistent in their behavior-one 
potential solution to automation surprises. 

Cognitive factors impacting mode 
usage 
Mode structure affects the cognitive demands 
placed on operators of complex systems, and 
therefore influences the performance of 
human operators using modes of automation. 
The more complex and highly automated the 
task environment is, the more susceptible 
operators are to mode errors (ref. 25). Four 
cognitive factors affect the performance of 
human operators of complex systems: knowl- 
edge factors impact knowledge use in various 
problem solving contexts; strategic factors 
drive tradeoffs in the face of changing objec- 
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tives, limited time, and high risks; attentional 
dynamics affect situation awareness and effec- 
tive attention allocation in high workload peri- 
ods; and, finally, bounded rationality leads to 
satisficing behavior that makes sense to 
humans in light of the other factors (ref. 11). 
The tasks involved in the selection and use of 
automation modes in complex systems pro- 
vide examples of these factors at work. In 
some situations, the mode management task 
can cause demand-resource mismatches that 
lead to mode errors. 

Mode usage tasks 
When an operational objective is communi- 
cated to the operator, the first task is to select 
a mode from the modes available to accom- 
plish the objective. The operator next pro- 
grams or configures the automation with 
information required by the selected mode, 
and engages the mode. Upon mode engage- 
ment, the operator monitors the operation of 
the automation to ensure that the desired mode 
engages properly, and that the behavior of the 
controlled system meets expectations. Some 
modes require the operator to arm the mode, 
then monitor the conditions for automatic 
mode engagement. In certain situations, the 
operator may meet an operational objective 
by adjusting the operation of a mode that is 
already engaged by reprogramming target Val- 
ues required to use the mode, or by engaging a 
submode of the mode that provides the 
required control behavior. 

Knowledge factors 
To use modes effectively, operators must 
understand how a particular mode should be 
used in conjunction with other modes, and the 
type of control needed in the current operat- 
ing context. A clear understanding of mode 
structure is critical to an operator’s ability to 
properly adjust the operation of a given mode, 
effect a transition between modes, or monitor 
mode transitions effected automatically by the 
automation. In complex systems, such knowl- 
edge requirements are a significant addition to 
the operator’s task (ref. 11). 

* 

* 

In complex systems, some subsystems are 
highly automated-much more so than other 
subsystems. The FMS, for example, requires 
an disproportionate increase in the depth of 
knowledge required to use it (refs. 67 and 58); 
hence, operators may develop “buggy” or 
incomplete mental models of how this auto- 
mation functions (refs. 69 and 70). 
Operators must also be aware of the complete- 
ness and accuracy of their knowledge. Because 
their knowledge of FMS function is often 
incomplete or inaccurate, pilots are known to 
develop a small set of reliable strategies, 
involving a few modes-which may not be 
adequate in critical or abnormal situations (ref. 
11). Other knowledge factors are inert knowl- 
edge, when facts about mode structure are 
known but cannot be applied in actual 
operating contexts (ref. 69), and oversimplifi- 
cations that result when heuristics are used 
inappropriately (ref. 83). 
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Figure 20. Operation of modes at different levels of automation. 

Strategic factors 
When selecting a mode, operators must con- 
sider the urgency with which a desired system 
state must be achieved, and the need to achieve 
safe and efficient system performance. 
Operators are often faced with tradeoffs-the 
penalty for not meeting a particular opera- 
tional objective may be greater than’the reward 
for meeting a competing objective. For exam- 
ple, modes that provide a high level of auto- 
mation control the system more precisely and 
efficiently than modes at lower levels of auto- 
mation. However, high-level modes ordinarily 
require more time to prepare for use (figure 
20). Eldredge et al. (ref. 58) found the use of 
high levels of automation provided by the 
FMS detrimental in high-workload situations. 
If sufficient time is not available to program 
the automation, or operational objectives are 
likely to change in the near future, operators 
typically sacrifice the improved efficiency 
offered by a high level of automation for more 
direct control at a lower level of automation 
(ref. 69). 

Another type of strategic factor plays a role 
in situations where the operator is responsible 

for the safe operation of the system, but has 
transferred authority to high-level automation. 
Woods et al. (ref. 11) term such difficulties 
“responsibility-authority double binds.” 
Operators must correctly adapt ambiguous or 
inadequate guidelines for using the automa- 
tion to the situation at hand (ref. 84), rather 
than permitting high-level automation to mis- 
handle the situation. Pilots can be surprised by 
the automation failing to take expected 
actions, or taking uncommanded actions (ref. 
70). Pilot strategy also includes “tricking” the 
FMS to achieve, for example, an early VNAV 
descent. Wiener (ref. 67) warns: “It does not 
speak well for automation that pilots of a 
modem airliner must deliberately enter incor- 
rect data into a sophisticated computer to 
achieve a desired objective @. 171) .” 

Attentional dynamics 
Attentional dynamics encompass “the factors 
that operate when cognitive systems function 
in dynamic, evolving situations (ref. 11, p. 
67),” including workload management and 
control of attention. Many processes, includ- 
ing directed attention, perceptual processes, 
mental simulation, and mental bookkeeping, 
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are referred to generally as situation awareness 
(ref. 70).  In complex task environments where 
modes are present, the term mode awareness 
has come to refer to an abstract level of vigi- 
lance and acumen required to manage the 
operation of multiple modes concurrently with 
other tasks. To maintain mode awareness, 
pilots of glass cockpit aircraft must know 
“who/which system is in charge of controlling 
the aircraft, what the active target values are, 
and whether they can anticipate the status and 
behavior of the FMS (ref. 69, p. 36?).” In 
short, they must be able to answer Wiener’s 
(ref. 67) three questions: “What is it doing 
now?,” “Why is it doing it?,” and “What’s it 
going to do next?” 
Clumsy automation often increases workload 
at times when it was already high, and reduces 
workload at times when workload is typically 
light (ref. 67). Pilot workload becomes 
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especially high at low altitudes near airports. 
Because pilots must meet objectives concern- 
ing both the lateral and vertical profiles, the 
selection and use of one mode must be per- 
formed simultaneously with another mode. 
This can create numerous attentional conflicts 
that may lead to a loss of awareness about the 
operation of the automation. For example, 
figure 21 shows that configuring one mode 
can compete with monitoring another (at time 
t,), two time t2), or a selection decision for one 
can compete with monitoring another (at time 
t3). Operators can also become fixated on one 
element of the automation at the expense of 
other attentional demands (such as monitoring 
and collision avoidance)- pilots go “head 
down,” for example, to program the FMS 
when they should be attending to other tasks, 
such as monitoring traffic (refs. 19 and 67). 
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Figure 2 1. Setup/Engagement or monitoring/adjustment of one mode can compete for attention with 
another mode during high workload periods. 
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Attentional factors-are compounded by auto- 
mation. Automation is often machine- 
centered, leading researchers to characterize -it 
as “strong and silent”; no increase in obsew- 
ability accompanies an increase in automation 
(ref. 70). The 1985 incident involving a China 
Airlines 747 (ref. 65) is an example of strong 
and silent automation. The aircraft experi- 
enced a loss of power in its outer right engine, 
which the autopilot compensated for-until it 
could no longer. The aircraft then plummeted 
31,500 feet and sustained serious damage 
before the crew could recover, because the 
autopilot failed to alert the pilots that it could 
no longer compensate for a loss of engine 
power. Norman (ref. 85) suggests this example 
shows automation is not powerful enough-if 
it were made more powerful, perhaps it could 
provide the feedback necessary to better 
inform operators about its control capabilities. 

Combined effects: bounded rationality 
Bounded rationality-the idea that human 
problem solvers possess limited cognitive 
capabilities-leads to “satisficing” behavior 
in which humans do what seems reasonable in 
light of their knowledge, objectives, and lim- 
ited attentional resources (refs. 86 and 87). 
Indeed, rationality must be bounded-to bring 
all potentially relevant information to bear 
would be overwhelming. Knowledge factors, 
strategic factors, and attentional dynamics 
interact to determine which resources are 
brought to bear on mode selection and use in a 
given situation. For example, the amount of 
time required to configure a mode for use is a 
function of the complexity of the program- 
ming task; the operator must understand the 
characteristics of the mode and decide whether 
attention can affordably be allocated to its use 
in the face of changing objectives. Knowledge, 
strategic, and attentional factors also impact 
operator decisions to decrease the amount of 
attention they need to devote to monitoring 
by opting for a lower level of automation 
when they are anticipating a period of high 
workload (ref. 11). 

Automation modes can also discretize aspects 
of the otherwise continuous operation of the 
controlled system. For example, in the 
Bangalore crash (ref. 88), the pilots inadver- 
tently engaged an Airbus A320 mode called 
Open Descent, which provides no altitude 
protection and led to the crash. Open Descent 
mode engaged automatically when the pilots 
entered a lower target altitude when the aircraft 
was already within 200 feet of the MCP alti- 
tude. If the pilots had entered the new target 
altitude when the aircraft was 205 feet from 
the set altitude, the accident might not have 
occurred. 
A combination of factors might have played a 
role in this disaster; indeed, a detailed analysis 
of the accident highlights several factors (ref. 
56): the captain was conducting a check flight, 
and the proper division of labor between crew 
members was not followed; the trainee pilot 
disengaged one, not both, flight directors, then 
became confused and fixated on the failure of 
the autothrottle to leave idle descent (once he 
realized he was in that mode); and, the crew 
relied on an A320 envelope protection feature 
to recover, but a time delay designed into the 
system caused the protection feature to engage 
too late. 

Summary 
Modes are useful because they provide control 
options to the human operator. However, the 
number of available modes, along with possi- 
ble interactions between modes that occur 
when several modes can be used in combina- 
tion, increases the potential for mode error. A 
range of possible mode configurations makes it 
easier to lose track of which modes are cur- 
rently controlling the system, especially since 
the same controls and displays are often used 
differently depending on the modes in use. 

The use of a given mode encompasses knowl- 
edge, attentional, and strategic factors 
depending upon its implementation. Super- 
vising the concurrent operation of multiple 
modes, besides resulting in increased work- 
load, can lead to misunderstandings about how 
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or when a particular mode should be used in 
conjunction with other operational modes, and 
misunderstandings about the type of control 
needed in a given situation. In situations where 
the operator must adjust the operation of a 
given mode, effect a transition between modes, 
or monitor mode transitions effected 
automatically by the automation, several of 
these factors can conspire to cause errors. 
Mode management is error-prone; therefore, 
operators supervising the operation of multiple 
modes to control complex systems are likely 

to benefit from operator’s associates, context- 
sensitive displays, and intelligent tutoring 
systems-three important applications of 
intent inferencing. 
This chapter provided background on modes 
in complex systems, which must first be under- 
stood in order to design a methodology for 
correctly predicting and interpreting operator 
actions. An understanding of modes is espe- 
cially important for developing models suit- 
able for supporting intent inferencing. The 
OFM-ACM is a model designed to represent 
knowledge required to effectively manage the 
operation of multiple modes. The OFM-ACM, 
along with the other elements of the GT-CATS 
activity tracking methodology and architecture 
is the subject of the next chapter. 
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methodology indirectly predicts when a mode 
transition is imminent, and to which mode. 4. A Methodology and Architecture 

for Activity Tracking 

Introduction 
This chapter describes the GT-CATS activity 
tracking methodology, along with a computer 
architecture for implementing the methodol- 
ogy to track operator activities in real time. An 
activity is simply something the operator does, 
expressed at any level of abstraction. Activity 
tracking is a machine capability analogous to 
the human supervisory controller’s task of 
tracking the status and behavior of the con- 
trolled system, and anticipating future changes 
(ref. 11) Activity tracking entails predicting 
operator activities, explaining operator 
actions, and flagging possible operator errors, 
in light of the status and behavior of the con- 
trolled system and anticipated future changes. 

Following an overview of the methodology, 
this chapter describes the components of the 
methodology. It then describes an architecture 
that connects these components to provide 
activity tracking capabilities. Finally, the 
chapter compares the GT-CATS methodology 
and architecture to related intent inferencing 
research. 

Overview of the GT-CATS methodology 
The GT-CATS methodology has four 
elements (figure 22). First, the methodology 
hypothesizes the next set of activities the 
operator will perform. It predicts one way of 
using of using the available control automation 
in the current operational context; specifically, 
the methodology predicts which mode(s) the 
operator is likely to select, and when, to 
achieve a desired system state. It also predicts 
how and when the operator will setup, engage, 
monitor, and adjust the selected mode. The 
methodology produces hypotheses at multiple 
levels of abstraction, in terms of high level 
activities (i.e., mode selections, tasks, and 
subtasks), as well as individual actions. By pre- 
dicting when a new mode will be used, the 

- ACTIVITY TRACKING 

1. Hypothesize operator activities 

2. Explain expected operator actions 1 
“REVISION PROCESS‘ 

3. Explain unexpected operator actions, 

or identify them as possible errors 

4. Issue alerts for errors of omission 

Figure 22. Elements of activity tracking. 

The second element of the GT-CATS meth- 
odology is to explain operator actions that 
support its hypotheses. By confirming that an 
expectation is met by an actual operator 
action, GT-CATS produces an explanation for 
the action. GT-CATS’ produces explanations 
at multiple levels of abstraction, in the 
manner of the initial hypothesis. 

Automation that offers the human operator 
several mode choices for accomplishing a goal 
makes explaining an operator’s choice of 
modes more difficult. Operators may switch 
between modes at will, seeking to exploit some 
perceived advantage of the new mode. The 
third element of the GT-CATS methodology, 
called the “revision process,” addresses this 
problem. The name refers to how GT-CATS 
revises hypotheses about the mode it expects 
the operator to use, and explains “unex- 
pected” actions as supporting an alternative 
mode that is also applicable in the current 
situation. This capability is vital to under- 
standing operator activities in multi-modal 
supervisory control environments. 

To explain unexpected actions, GT-CATS’ 
revision process uses updated information to 
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assess whether the operator's mode choice is 
valid; if it is, GT-CATS explains the action as 
supporting the alternative mode. The second 
function of the revision process is also 
extremely important: detecting possible 
operator errors. If an unexpected action can- 
not be explained via the revision process, GT- 
CATS identifies the action as a potential error. 
The fourth element of the GT-CATS activity 
tracking methodology is to identify predicted 
actions that have not been detected or super- 
seded by alternative actions. Expectations for 

designed to note the possibility that the opera- 
tor has forgotten a required action, or is 
unaware that a mode change is required in a 
particular situation. 

The GT-CATS methodology is predicated on 
the additional requirement that the predictions 
and interpretations of operator actions should 
be produced in real time. A real-time under- 
standing is vital because intelligent tutors and 
aids must keep up with the operator-automa- 
tion interactibn as it unfolds. 

operator actions that have not been met, and 
have not been superseded by actions related to 
an alternative mode, suggest a possible error of 

Components of the GT-CATS 
methodology 

omission. Thus, the GT-CATS meth'odology is 

7 GT-CATS \ 

Operator Model 

Figure 23. Knowledge representation in the GT-CATS methodology. 

The GT-CATS methodology uses four knowl- 
edge representations that are linked through 
processing (figure 23). The first is a static 
task-analytic model of operator activities. The 
second is an instantiation of the task-analytic 
model in a computational form that is 
dynamically annotated during run time. The 
methodology uses this instantiation to inter- 
pret the current operator actions. During 
processing, knowledge about the current status 

of activities is added to the computer 
instantiation of the model to produce expecta- 
tions. The computational operator model is 
also critical for producing explanations, 
because the methodology explains actions at 
the levels of abstraction represented in the 
model. The remaining two knowledge repre- 
sentations provide current knowledge about 
the constraints imposed by the environment 
and the state of the controlled system. 
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Figure 24. Generic structure of the OFM-ACM. 

Representing the operator’s task: The 

Knowledge about the operator’s task is repre- 
sented by an explicit, task-analytic model 
based on the OFM. Called an Operator Func- 
tion Model for systems with Automatic Con- 
trol Modes (OFM-ACM), the model specifies 
how operators use automation modes to 
achieve desired performance from the con- 
trolled system. The OFM-ACM imparts an 
expIicit mode orientation to the O m .  Like the 
OFM, the OFM-ACM is structured as a 
heterarchical-hierarchical network of nodes 
that represent operator activities at relevant 
levels of abstraction (figure 24). 
In the hierarchical dimension, the OFM-ACM 
decomposes operator functions that must be 
performed to meet operational goals into the 
modes that can be used to perform them, and 
in turn decomposes each mode into the tasks, 
subtasks, and actions required to use the mode 
depending on the situation. As with the OFM, 

OFM-ACM 

such a decomposition is referred to as an 
“activity tree.” The OFM-ACM’s structure is 
also heterarchical like the OFM. The heterar- 
chy is important for representing multiple 
functions that can be performed concurrently, 
and because the use of a particular control 
mode often allows or requires operators to 
perform tasks or subtasks concurrently. 
The OFM-ACM enhances the OFM heterarchy 
by including an explicit hierarchical decom- 
position of operator activities for each phase 
of system control in the manner of Jones et al. 
(ref. 50) and Thurman and Mitchell (ref. 89). 
This enables operator control responsibilities 
to be represented explicitly in systems whose 
operation is generally thought of as consisting 
of several mutually exclusive phases, each of 
which requires operators to undertake a par- 
ticular set of control functions. This structural 
feature of the OFM-ACM allows differences in 
how a mode is used to perform a required 
function in a given phase to be explicitly 
represented. 
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Figure 25. Generic decomposition of mode selection X into “setup/engage” and “monitor/adjust” task 
subtrees. 

The structure of the OFM-ACM provides a 
theoretical framework for organizing knowl- 
edge about the operator’s task. A control 
function is decomposed into the mutually 
exclusive mode selections available for per- 
forming it, each representing a control option 
available to the operator. Each applicable 
mode is decomposed into task “subtrees” that 
represent a task, its subtasks, and the support- 
ing actions required to use the mode. For 
modes that are engaged manually, one task 
subtree commonly represents mode setup and 
engagement activities; a second represents 
monitoring and adjustment activities. A 
generic view of the task subtrees used in the 
OFM-ACM structure is depicted in figure 25. 

Another important structural feature of the 
OFM-ACM is that activities above the mode 
selection level must be uniquely determinable 
(figure 26); activities above the mode selection 
level must be structured such that there is no 
ambiguity as to when the operator is expected 
to perform these activities. This is because GT- - 
CATS must first be able to isolate the mode 
choices that the operator has in a given situa- 
tion, in order to expect and explain operator 
mode usage. GT-CATS must be certain about 
the high-level activities that should be per- 
formed in order to determine the set of mode 
selections applicable to the situation. 

- 
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Figure 26. Functions are uniquely determinable; mode selections are uncertain. 

Like the OFM, the OFM-ACM is generalizable 
with respect to the number of levels of 
abstraction required to adequately represent 
knowledge about the operator’s task. GT- 
CATS’ processing scheme, however, uses the 
mode selection level as a “pivot-point” for 
resolving uncertainty. In determining whether 
an unexpected action can be explained as sup- 
porting an alternative valid mode, the revision 
process refers to occurrences of the action 
that can support the possible set of modes. 
From a top-down perspective, the mode selec- 
tion level is the first level of abstraction at 
which uncertainty is encountered because 
several modes may be applicable; from a bot- 
tom up perspective, the mode selection level 
is the first level at which uncertainty can be 
resolved because each mode selection corre- 
sponds directly to a mode that must be 
engaged in the controlled system if the opera- 
tor has performed an action that supports a 
task related to using that mode. 

The contents of the individual nodes that 
comprise the OFM-ACM activity trees are also 
important to the GT-CATS methodology. 
Each node encapsulates knowledge about the 
activity (figure 27). Basic knowledge includes 

the name of the activity, an identification 
number, and the level of abstraction at which 
the activity resides. A reason for the activity 
that reflects its inclusion in the OFM-ACM at 
the present location is also included for refer- 
ence. This reason provides additional knowl- 
edge about the activity that might be useful for 
an intelligent tutoring or aiding system. 
Knowledge about the type of activity is also 
contained in a node (see figure 27). This 
information distinguishes manual, perceptual, 
cognitive, or verbal operator actions. Although 
the actions that the GT-CATS methodology 
can track computationally are limited cur- 
rently by affordable technology to detectable 
manual actions, the methodology is also appli- 
cable to tracking perceptual, cognitive, or ver- 
bal actions. The task subtrees shown earlier are 
structured to represent activities of all of these 
types; the GT-CATS methodology includes 
them because such activities are important for 
the operator to perform in monitoring the 
behavior of the automation and controlled 
system. Although the methodology cannot 
explain perceptual, cognitive, or verbal actions 
because they are undetectable, by including 
them, the methodology can expect when such 
activities should be performed. 
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name: perform function A 
identifier: 2021 
node-type: function 
uplinks: 
function) 
down-links: 3022, 3023, 3024 (identifiers of mode selections 
into which this function is decomposed) 
reason: function A should be performed to bring state variable 
X within limits 
conditions: state variable X outside limits 
agent: (for low level tasks/subtasks/actions allocated to a 
specific crew member) 
activity-type: (for actions; manual, perceptual, cognitive, or 
verbal) 
automation mode: (for mode selections; indicates 
automation mode corresponding to the mode selection) 

1007 (identifier of subphase that includes this 
- 

Figure 27. Knowledge contained in an OFM-ACM activity node. 

Nodes in the OFM-ACM also represent knowl- 
edge about the agent responsible for per- 
forming the activity (see figure 27). The GT- 
CATS methodology is oriented toward systems 
where the “operator” may actually be a team 
of operators; this is the “crew” in GT-CATS. 
In such cases, knowledge about task allocation 
among the crew members is crucial for under- 
standing human-automation interaction. With 
this knowledge, an action appropriate for a 
given situation may be identified as a depar- 
ture from operational guidelines if performed 
by the wrong member of the crew. 

Finally, each node has conditions that specify 
the operational context in which the operator 
is expected to perform the activity (see figure 
27). The conditions in a node consist of a set 
of “context specifiers.” Context specifiers 
play a critical role in the GT-CATS methodol- 
ogy. They link dynamic context knowledge 
from the representations of the environment 
and controlled system to knowledge of the 
operator’s task represented in the computa- 
tional instantiation of the OFM-ACM (figure 
28). 

- 

- 
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Context specifiers are activated based on the 
representations of the controlled system and 
environmental constraints. An individual con- 
text specifier summarizes the relationship 
between a particular aspect of the state of the 
controlled system and an environmental con- 
straint. A generic example of this is shown in 
the conditions in the OFM-ACM activity node 
in figure 27: the state variable X, when related 
to constraints on its value imposed by the envi- 
ronment, does not meet the constraints (i.e., 
the value of X is “outside limits”). The value 
of using context specifiers to condition when 
an operator is expected to perform some 
activity is shown by this same example. 
Regardless of the actual value of the state vari- 
able X (which is dynamic), and the particular 
environmental constraint that binds it (which is 
also dynamic), the resulting context specifier 
takes a static form which can be used as a con- 
dition for expecting the activity as modeled in 
the OFM-ACM. 
The conditions contained in activity nodes in 
the OFM-ACM may consist of multiple 

context specifiers. The group of context speci- 
fiers used as conditions in a given activity 
node together reflect the relationship between 
multiple state variables and environmental 
constraints. Further, the GT-CATS methodol- 
ogy allows that the conditions in a node may 
consist of two groups of context specifiers. If 
either one group or the other is present, the 
operator is expected to perform the repre- 
sented activity. 
The conditions in the OFM-ACM are special- 
ized for activities at each level of abstraction 
(figure 29). Generally, high-level activities 
have conditions comprised of context specifi- 
ers that relate general environmental knowl- 
edge to general state knowledge to express the 
current relationship between the goals of the 
operator and the state of the controlled system. 
Conditions at the mode selection level are 
comprised of context specifiers that reflect the 
state of the control automation vis a vis the 
preferred control mode (figure 29). Nodes 
that represent mode selections in the OFM- 
ACM also contain an additional piece of 
knowledge: the corresponding automation 
mode that should be engaged if the operator 
has selected the particular mode. This knowl- 
edge is specific to the mode selection level of 
the OFM-ACM, and is vital to the revision 
process. 
Below the mode selection level, conditions are 
constructed from context specifiers that relate 
specific knowledge about the state of the 
automation to specific knowledge of environ- 
mental constraints. Context specifiers of this 
sort are used to identify tasks and actions rele- 
vant to the preferred mode selection that pro- 
duces the required response in the controlled 
system (figure 29). 

41 



automation programmed; 
automation not in mode X 

state variable T exceeds value T i  ; 
state variable X outside limits c 

target value X on mode 
control panel outside limits 

Figure 29. Generic examples of context specifiers with different characteristics as conditions in the 
OFM-ACM at different levels of abstraction. 

The context specifiers that serve as conditions 
on activities in the OFM-ACM are also impor- 
tant for specifying procedural or concurrent 
activities. Concurrent activities have conditions 
that include the same, or similar, context speci- 
fiers. Activities that comprise steps in a proce- 
dure have as conditions context specifiers that 
reflect the effects of earlier steps in the proce- 
dure. For example, the “setup/engage” and 
“monitor/adjust” tasks shown in figure 25 
form a procedure; the “setup/engage” task is 
followed by the “monitor/adjust” task. In this 
case, the conditions under which the 
“monitor/adjust” task is relevant reflect the 
fact that the “setup/engage” task has been 
performed (i.e., the automation is now in 
mode X). 
To summarize, context specifiers form the 
conditions in the nodes of the OFM-ACM that 
indicate when an activity is expected. Knowl- 
edge about the reason for the activity con- 
tained in each node, noted above, essentially 
states why the activity is preferred under the 
conditions designated by context specifiers in 
the node. The fidelity of the context specifiers 
that comprise each node’s conditions affects 

the methodology’s activity tracking capabili- 
ties. The context specifers that serve as condi- 
tions must specify the operational context in 
which the activity is appropriate to afford 
unambiguous expectations. 

Representing the state of the controlled 
system: The state space 
The GT-CATS state space encapsulates all 
relevant knowledge about the state of the con- 
trolled system. This includes the state of the 
controlled system, as well as the state of the 
control automation, as shown in figure 30. The 
state space is updated dynamically to reflect 
changes in the state of the controlled system. 
The fidelity of the state space is defined by the 
granularity of the state knowledge (Le., how 
detailed the representation is), along with how 
frequently it is updated. The state space must 
be updated frequently enough to accurately 
reflect current state information, in order to 
produce con text specifiers that accurately 
portray the current operational context of the 
system. 

- 
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Figure 30. GT-CATS’ state space knowledge 
representation. 

Representing environmental constraints: 
The Limiting Operating Envelope 
“For realistically complex problems there is 
often no one best method; rather, there is an 
envelope containing multiple paths each of 
which can lead to a satisfactory outcome (ref. 
11, p. 16).” In the GT-CATS methodology, 
the structure of the OFM-ACM represents 
knowledge of these paths. An analogous con- 
cept is applicable to dynamic constraints 
placed on the operation of the controlled sys- 
tem by the environment; these constraints 
define an envelope in which the system must 
operate. The GT-CATS methodology terms 
this representation the “Iimiting operating 
envelope.” The limiting operating envelope 
(LOE) is constructed in a manner similar to 
that of the space of feasible solutions in the 
field of computational optimization. Each 
environmental constraint is imposed on the 
space of possible system operations, and the 
limiting constraints are identified. This set of 
limiting constraints defines the space of feasi- 
ble operations of the controlled system. 

The GT-CATS LOE summarizes the con- 
straints placed on a controlled system derived 
from safety concerns, regulatory agencies, the 
operating organization, and the capabilities of 
the controlled system itself. Assuming a well- 
trained and motivated operator, the constraints 

on system operation represented by the LOE 
define operator objectives. The LOE is 
dynamic, because the GT-CATS methodology 
is concerned with systems in which the state of 
the system and the goals of the operator are 
dynamic. When the constraints change, the 
LOE representation must change to reflect the 
new constraints. 
The GT-CATS LOE is therefore designed with 
two distinct elements. The first element repre- 
sents the operator’s goals and environmental 
constraints as far into the future as they are 
known, expressing them as a series of “limit 
states” to & attained. A limit state is simply a 
collection of state values that reflect the goals 
to be achieved. As the “active limit state” is 
attained, the LOE’s binding constraints 
become those reflected in the next limit state, 
and so on, as system operation progresses (see 
figure 31). 
The second element of the LOE represents 
any temporary modifications to the active 
limit state; this knowledge, when applicable, 
effectively ovemdes portions of the active 
limit state such that a short-term limit state 
takes precedence in constraining system 
operation. A short-term limit state is expressed 
as a set of state values in the LOE. Only some 
of the state values in the short-term limit state 
may be important in representing the short- 
term goal. The active limit state constrains all 
aspects of operation except for those con- 
strained by valued parts of the short-term 
limit state representation (i.e., the short-term 
limit state can override all or some of the cur- 
rently active long-term limit state. The LOE 
may contain redundancies where the short- 
term limit state specifies constraints on opera- 
tion that are also specified by the active limit 
state. Figure 31 illustrates this principle. In 
figure 31 the active limit state calls for the 
value of state variable V to be V2, while the 
short-term limit state specifies that the value 
of V should be V*. Thus, the value V2 is over- 
ridden by the value V* specified in the short- 
term limit-state, and all other values in the 
active limit state still reflect current goals. 
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LJ v = V' 
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Figure 31. A generic LOE. The first limit state has been attained; the second limit state represents is 
the active limit state. The value V* in the short-term limit state representation overrides the value 
V2 in the active limit state. 

The LOE representation is used to supply 
knowledge critical for determining the current 
operating context, and is therefore subject to 
requirements that affect its utility for generat- 
ing context specifiers. Because the context 
specifiers are derived from the LOE and the 
state space, the knowledge in the LOE is speci- 
fied at the same fidelity and at the same level 
of abstraction as the knowledge in the state 
space. Thus, state space knowledge can be 
compared with knowledge in the LOE to 
activate context specifiers. 

The Dynamically Updated OFM-ACM 
In the GT-CATS methodology, a computa- 
tional operator model is derived directly from 
the OFM-ACM, as shown above in figure 23. 
The Dynamically Updated OFM-ACM (DUO) 
is a computational instantiation of the OFM- 
ACM that serves the dual purposes of repre- 
senting the knowledge contained in the OFM- 
ACM and representing the current operator 
interaction with the control automation. DUO 
contains all of the knowledge specified by the 
Om-ACM, and dynamically annotates it with 
knowledge to support real-time activity 
tracking. 

When the OFM-ACM is instantiated in DUO, 
nodes in the OFM-ACM become computa- 
tional objects, with slots to hold the descriptive 
knowledge about the activity represented by 
the node, as well as the conditions knowledge. 
In addition, a node in DUO contains slots to 
hold knowledge about the status of the activity 
in the current operational setting, and the his- 
tory of the activity's status (figure 32). The 
status of the activity node reflects its relevance 
to the activity tracking process at the current 
time. The history of the activity node is a time- 
stamped record of the status of the node over 
the course of system operation. 
The instantiation of the OFM-ACM in DUO 
also requires that activities at the action level 
that can support multiple tasks must be repre- 
sented uniquely for each task. The GT-CATS 
methodology seeks to disambiguate actions 
with multiple purposes when producing 
expectations and explanations. When generat- 
ing expectations, the methodology seeks to 
determine the precise activities at each level of 
abstraction that are preferred in current oper- 
ating context. An action that supports several 
tasks or modes is represented as a unique 
instance of the action. This enables any 

~ 
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name: perform function A 
identifier: 2021 
node-type: function 
up-links: 1007 (identifier of subphase that includes this function) 
down-links: 3022. 3023, 3024 (identifiers of mode selections into which this function 
is decomposed) 
reason: function A should be performed to bring state variable X within limits 
conditions: state variable X outside limits 
agent: (for low level tasks/subtasks/actions allocated to a specific crew member) 
activity-type: (for actions; manual. perceptual, cognitive, or verbal) 
automation mode: (for mode selections; indicates automation mode corresponding 
to the mode selection) 

I status: inactive 
I history: t l  : inactive; t2: active; t3: inactive; t4: active; t5: inactive 

Figure 32. Knowledge about the status and history of the activity is added when the OFM-ACM is 
instantiated in DUO. 
differences in the operational context in 
which the action should be expected to be 
represently explicitly, differentiating the 
action from other instances of the same 
physical action. Further, different agents may 
be responsible for the same action depending 
on the operational context and the high level 
activities it supports; here the responsible 
agent differentiates one instance of the action 
from another. 
When explaining a detected operator action 
that was expected, GT-CATS links the 
detected action with an action in DUO that 
has as its parent activities a task and mode 
selection that explain the action (figure 33). 
Similarly, when determining whether an unex- 
pected action can be explained, or might be an 
error, the methodology uses the revision proc- 
ess to determine if another instance of the 
action in DUO supports a task and mode that 
can explain the action. Thus, representing 

actions explicitly for each task in the OFM- 
ACM enables DUO to disambiguate actions 
that can support multiple tasks. 

The GT-CATS methodology uses a processing 
scheme that updates DUO with each update to 
the state space and LOE. On each processing 
cycle, the state space and LOE are used to acti- 
vate a set of context specifiers. The processing 
cycle assigns the status “active” to nodes in 
DUO whose conditions are a proper subset of 
the current set of active context specifiers; the 
processing cycle assigns the status “inactive” 
to nodes not meeting this criteria. If the status 
of a node changes, GT-CATS updates the 
node’s history list. At the end of the process- 
ing cycle, active nodes represent activities that 
are expected at that time; inactive nodes are 
not currently expected. Thus, the processing 
scheme uses DUO to maintain a dynamic rep- 
resentation of expectations about operator 
activities. 
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Figure 33. By representing actions uniquely for each task they support, as in this generic example, 
the OFM-ACM disambiguates equivalent control actions in expecting and explaining such actions. 

DUO is updated with a top-down, 
breadth-first search procedure. The procedure 
starts with the nodes at highest (phase) level in 
DUO, and matches their conditions against the 
currently active set of context specifiers to 
determine the active phase. Inactive phase 
nodes, and all their subnodes, are inactive and 
not considered further. This process is then 
repeated for the subphases of the active phase. 
Recall that at the phase and subphase levels, 
the OFM-ACM nodes are mutually exclusive. 
Again the active one is found and the others 
are removed from consideration. At lower 
levels in DUO, the search of subnodes of an 
active node can identify multiple active sub- 
nodes, representing operator activities that are 
expected to be performed concurrently. 
The general processing scheme applies to all 
levels of abstraction in DUO, with the excep- 
tion of the mode selection level. As the 
“pivot-point” in the OFM-ACM representa- 
tion of the operator’s task, the active mode 
selection is determined by taking into account 
the related mode knowledge encapsulated only 
in nodes at the mode selection level. Three 

cases can arise in determining the active mode 
selection (see figure 34): 

Case 1: The mode selection is active 
because its conditions are a proper subset of 
the currently active set of context specifiers, 
and the state space reflects that the corre- 
sponding mode is engaged in the control 
automation. 

Case 2: The conditions of the mode 
selection node in DUO match a subset of the 
currently active set of context specifiers, but 
the corresponding mode is not engaged. In 
this case, the mode selection is assigned the 
status“active,” because the mode selection is 
expected in the current situation according to 
the conditions specified in the OFM-ACM. In 
this way the methodology derives an expecta- 
tion that the mode will be used. 

Case 3: If the conditions in the mode 
selection node do not match a subset of the 
current set of context specifiers, but the auto- 
mation mode that corresponds to the mode 
selection in DUO is engaged, a new status 
designator, “obsolete,” is assigned to the 
mode selection. The “obsolete” status desig- 

. 
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nator means that, although the mode is 
engaged, conditions indicate that another 
mode is needed, and thus expected, in the 
situation: The obsolete node is processed like 
an active node, in that active tasks below it are 
designated active or inactive according to their 
conditions. In this situation, the activities des- 
ignated active will be those involved with 
monitoring the operation of the mode as long 
as it remains engaged before the transition to 
the expected mode. 
The conditions on alternate mode selections 
are structured so that if the higher level activity 
that any of the available modes supports is 
active, the conditions for one of these alternate 
mode selections must match the current set of 
context specifiers. Therefore, in this case, the 
mode selection that corresponds to the 
engaged mode should be monitored, but is 
(about to become) obsolete; there exists 
another mode selection to which the operator 
is expected to transition, because its conditions 
match the current set of context specifiers 
according to case 2. 
In examining the interplay between cases 2 
and 3, it is important to note the reason why a 
mode selection in case 2 may not have an 

alternative competing mode with status 
“obsolete.” This is because the active func- 
tion may have changed. Only when the same 
function remains active can one mode selec- 
tion become obsolete and an alternative mode 
selection be active as in case 3. 
The processing scheme in which active and 
inactive nodes in DUO are identified by 
matching the current set of context specifiers 
to the conditions knowledge in each node (and 
related mode knowledge at the mode selection 
level) produces hypotheses about the currently 
relevant set of operator activities. This process 
works top-down through the levels of abstrac- 
tion instantiated in DUO. The search is pared 
at each level by limiting the next level of 
search to the nodes into which active (or 
obsolete) nodes are decomposed. Processes 
that explain operator actions and detect errors, 
however, require knowledge about actual ’ 

actions. The revision process is the centerpiece 
of these processes. The revision process and 
related processes that work bottom-up using 
knowledge from DUO along with knowledge 
about actual operator actions are the responsi- 
bility of the GT-CATS action manager. 
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Context Specifiers 
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I 
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can be active) active function 
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described by case 3) 

\t-------; 
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Figure 34. Mode selections may be “active” or “obsolete.” 

The GT-CATS action manager 
The GT-CATS methodology uses DUO to 
predict operator activities; however, DUO is 
supplemented by the action manager, a 
mechanism for managing the remaining activ- 
ity tracking functions. All of these functions 
involve examining detected operator actions in 
light of the knowledge in DUO. First, the GT- 
CATS action manager attempts to confirm that 

an actual operator action meets expectations, 
and explains it accordingly. Failing that, the 
action manager initiates the revision process 
to determine whether an unexpected operator 
actions suggests a valid alternative mode, or 
whether it is possibly in error. 

The action manager’s first function is to gen- 
erate explanations for operator actions that 
match expectations represented by active 
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Figure 35. GT-CATS action manager. 

nodes in DUO (see figure 35). This entails 
determining whether a detected operator 
action has a corresponding active action node 
in DUO. If so, the action manager assigns the 
action a status of “explained.” 

If the action manager cannot locate a corre- 
sponding active action in DUO, the observed 
action is defined to be unexpected. The action 
manager allows a period of time to elapse, 
then applies the revision process to the unex- 
pected action (see figure 35). The revision 
process either explains the action, or identifies 
it as a possible error. To formulate a new 
explanation for the action, the action man- 
ager uses DUO in a bottom-up manner. It first 
identifies all action nodes that are instances of 

the unexpected action that support active 
functions. It then checks the mode selection 
that the action supports to see if it is now 
active, or, according to its history list, has 
been active in the time since the action was 
detected. If so, the action manager removes 
any other instances of candidate action nodes 
from consideration and explains the 
unexpected action. 

Explaining the action involves first removing 
hypotheses about actions expected to support 
an alternative mode selection in DUO. GT- 
CATS identifies the alternative mode selec- 
tions using the structure of the DUO, and 
checks their status. If any are active, the 
active manager makes them and all of their 
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subnodes inactive. It then sets the status of the 
node that corresponds to the unexpected 
action to “revised-explained.” Finally, the 
action manager explains that the unexpected 
action supports a task that supports an 
alternative valid mode selection. Thus, to per- 
form the revision process, the action manager 
uses DUO-by now updated to reflect active 
context specifiers-along with status and his- 
tory knowledge encapsulated in DUO’S nodes, 
and the structure of the OFM-ACM from 
which DUO derives. 

If the revision process cannot explain an 
unexpected operator action, the action 
manager determines that the action was not 
understood. Such an action is possibly an 
operator error. The revision process cannot 
explain actions represented by instances of 
action nodes in DUO that support mode selec- 
tions that have not been active between the 
time the action was detected and the time the 
revision process was applied. In this case, the 
action manager issues an alert signaling that 
no alternative instance of an action node in 
DUO explains the action, as shown in figure 
35. 

The GT-CATS methodology uses the expecta- 
tions represented by the nodes with active 
status in DUO to flag actions that the opera- 
tor may have omitted. When an action node 
becomes active, the action manager allows a 
period of time to elapse. If the action is not 
detected within this time period, and no other 
actions are detected for which the revision 
process can determine that the operator chose 
an alternative mode, the action manager issues 
a warning that the operator may have omitted 
the hypothesized action (see figure 35). 

Figures 36 through 39 show a generic example 
of the revision process. Figure 36 shows a 

generic portion of DUO that represents two 
modes (and their supporting tasks, subtasks, 
and actions) that can both be used to perform 
a particular function. Shaded activities have 
active status, and are therefore expected. 
Among these activities is the action “push 
mode 1 switch.” In figure 37, the operator has 
performed the action “push mode 2 switch” 
instead. This action is unexpected, because an 
action node representing this action is not 
active in DUO. The GT-CATS action manager 
therefore schedules an event to perform the 
revision process on the action. In figure 38, 
the fact that the operator performed “push 
mode 2 switch’’ has since been reflected in an 
updated version of DUO; when mode 2 actu- 
ally engages in the controlled system, its cor- 
responding mode selection becomes active in 
DUO, along with the monitoring activities 
required to use mode 2. When the action man- 
ager executes the revision process (figure 39), 
the “push mode 2 switch” action is explained 
to support the use of mode 2 in the situation, 
which is valid according to the structure of the 
OFM-ACM embodied by DUO. 

- 

Summary of the GT-CATS methodology 
In the GT-CATS methodology, knowledge 
about the operator’s task represented in the 
OFM-ACM is instantiated in DUO. State space 
and LOE knowledge is used to activate a set of 
current context specifiers, which are in turn 
used to activate nodes in DUO to produce 
expectations of activities that are preferable 
in the current context. When the operator 
performs an action, the action manager either 
explains it according to an existing expecta- 
tion, explains it via the revision process, or 
identifies it as a possible error. If no action is 
detected that can be explained, an error of 
omission is indicated. 
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Figure 36. Mode selection 1 is expected to be engaged by pressing the mode 1 engagement switch. 
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setup mode 1 

Figure 37. An unexpected action is detected (push mode 2 switch). 
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Figure 38. DUO is updated to reflect that mode 2 is engaged in the controlled system. 
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Figure 39. The revision process explains the action as supporting the use of mode 2. 

Figure 40 shows a hnctional view of the GT- 
CATS architecture. Components derived from The GT-CATS architecture 

A computer architecture has been developed 
for implementing the GT-CATS methodology. 
The architecture provides a computational 
framework for tracking the activities of 
operators using automation to control a com- 
plex dynamic system in real-time. The GT- 
CATS architecture has structures for repre- 
senting the knowledge required by the GT- 
CATS methodology and methods to control 
the processing of these knowledge 

the GT-CATS methodology &e., the OFM- 
ACM, DUO, the LOE, state space, context 
specifiers, and action manager) are outlined in 
bold in figure 40. Figure 40 also depicts addi- 
tional components needed to receive data (Le., 
the interface/parser), coordinate real-time 
processing (i.e., the controller), and log and 
display expectations and explanations (Le., 
the output interface). Arrows represent infor- 
mation flow between components. 

representations. 
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Figure 40. Functional view of the GT-CATS architecture. 

Figure 40 also shows the methods used to 
process the knowledge representations. One set 
of methods instantiate the OFM-ACM in DUO, 
and initialize the LOE and state space. During 
run time, other methods update the LOE and 
state space as new objectives and system state 
information are received, activate context 
specifiers, and update and access DUO. Figure 
40 also depicts the relationship of the GT- 
CATS action manager to the other compo- 
nents of the architecture. The action manager 
uses methods that access DUO in the process 
of explaining detected actions. The action 
manager also has methods that change the 
status of nodes in DUO when executing the 
revision process. 

The OFM-ACM in the GT-CATS 
architecture 
The OFM-ACM model of operator-automa- 
tion interaction is the critical knowledge repre- 

sentation in the GT-CATS architecture. The 
OFM-ACM must therefore be represented at a 
level of detail and fidelity suitable for instanti- 
ating its knowledge in DUO. Each node in the 
OFM-ACM is represented in an ASCII file that 
GT-CATS reads to instantiate the DUO repre- 
sentation (Table 1). This arrangement affords 
easy inspection of the OFM-ACM, and simpli- 
fies modifications. 
The OFM-ACM file structure uses nested 
brackets to represent the hierarchical structure 
of the OFM-ACM. The OFM-ACM heterarchy 
is represented by activities represented by 
brackets at the same nested level. Keywords 
indicate the type of knowledge specified after 
them. An exclamation point demarcates a 
comment line; blank lines are ignored. 

GT-CATS uses a recursive method to construct 
DUO from the OFM-ACM text file 
representation. 
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Table 1. Generic OFM-ACM file structure. 

! activity-l.ofm-acm 
! a generic example of the OFM-ACM file structure 

{ activity-level-1 activity-1 
reason information about why activity-1 is preferred 
! conditions are optional--they may be inherited 
active-when context specifier 1 
active-when context specifier 2 
active-when context specifier 3 
active-when-1 context specifier 2 
active-when-1 context specifier 4 
! activity type and agent may be used only where necessary 
activity-type type-designator 
agent agent-designator 
! automation-mode is used only at the mode-selection level 
automation-mode mode-designator 
{ activity-level-2 activity-2 

reason information about activity-2 
active-when context specifier 5 
active-when context specifier 6 
active-when context specifier 7 
active-when-1 context specifier 6 
active-when-1 context specifier 8 
activity-type type-designator 
agent agent-designator 
subfile lower-level-activity-l.ofm-acm 
subfile lower-level-activity-2.ofm-acm 
subfile lower-level-activity-3.ofm-acm 1 

reason information about activity-3 
active-when context specifier 9 
active-when context specifier 10 
active-when-1 context specifier 6 
active-when-1 context specifier 11 
active-when-1 context specifier 12 
activity-type type-designator 
agent agent-designator 
subfile lower-level-activity-2.ofm-acm 
subfile lower-level-activity-4.ofm-acm 
subfile lower-level-activity-5.ofm-acm 1 1 

{ activity-level-2 activity-3 

The method is described in detail in the next 
section; here the discussion will be limited to 
the specification rules. Table 1 shows an activ- 
ity (activity-1) at level “activity-level-1” with 
two sub-activities (activity-2 and activity-3) at 

level “activity-level-2.” The inclusion of 
these activities within the brackets of activity- 1 
captures the hierarchical decomposition. 
Figure 41 shows the structure that is built from 
the file shown in table 1. Depending on the 
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Figure 41. Structure of decomposition that results from the file specification shown in Table 1. 

conditions for activity-2 and activity-3, these 
activities may be concurrent or serial. 
Activity-1 has two sets of conditions under 
which it is active. The keywords “active- 
when” and “active-when-1’’ provide a simple 
method for specifying these conditions. These 
keywords specify that activity-1 is active either 
when hypothetical context specifiers 1, 2, and 
3 are present, since they all follow the keyword 
“active-when,’’ or when context specifiers 2 
and 4 are active, since they all follow the 
keyword “active-when-1.’’ Similarly, activity- 
3 is active either when context specifiers 9 and 
10 are active, or when context specifiers 6, 11, 
and 12 are present. As table 4-1 shows, the 
conditions are grouped with the appropriate 
keywords. Because of the way in which the 
search for active activities proceeds in GT- 
CATS, conditions need not always be speci- 
fied; an activity with no conditions is active if 
its parent activity is active. 
The keyword “reason” is followed by a 
statement of why the activity is preferred 
under the specified conditions. The keywords 
“activity-type,” “agent,” and “automation- 
mode” are used to specify the corresponding 

knowledge. Automation-mode knowledge is 
included only in activities at the mode-selec- 
tion level of the OFM-ACM. This knowledge 
consists of the automation mode that is 
engaged if the mode selection is chosen. 
Activity-type and agent knowledge is used at 
the action level to indicate whether the activity 
is manual, perceptual, verbal, or cognitive, and 
the agent responsible for performing the 
activity. 
The last important feature of the OFM-ACM 
file specification is the “subfile” keyword. 
The subfile keyword is followed by the name 
of the file that contains the knowledge about 
the activities into which an activity is decom- 
posed. For example, in table 1 activity-2 and 
activity-3 are both decomposed into three 
activities at the next level of abstraction, as 
indicated by the three subfile designators 
inside their brackets. Each subfile may specify 
further decomposition of these activities. The 
subfile keyword is a convenient shorthand 
because activities that occur multiple times in 
the OFM-ACM can be specified in a single file 
that is read multiple times. In table 1, activity-2 
and activity-3 are both decomposed such that 

57 



- Node 

name: activity-1 
node-type: activity-level- 1 
reason: “information about why the activity is preferred” 
id-num: 
uplinks: 
downlinks: 
conditions: ((context specifier 1, context specifier 2, 

(context specifier 2, context specifier 4)) 
context specifier 3) 

activity-type: type-designator 
agent: agentdesignator 
automation-mode: mode-designator 
status: 
history: 

~~ ~~ 

Figure 42. A generic node structure in DUO. 

“lower-level-activity-2” appears in their 
decompositions. Reading the file “lower-level- 
activity-2.ofm-acm” for each Occurrence 
makes lower-level-activity-2 a sub-activity of 
both, as shown in Figure 41. 

The Dynamically Updated OFM-ACM 
The Dynamically Updated OFM-ACM (DUO) 
is instantiated as a collection of instances of 
activity nodes. An activity node contains all of 
the knowledge specified for an activity in the 
OFM-ACM, plus knowledge to support proc- 
essing. Figure 42 shows an activity node that 
would be created for activity-1, as specified in 
table 1. 

DUO construction procedure 
The nodes that comprise DUO are constructed 
from the OFM-ACM by a recursive procedure. 
The procedure takes as input the highest level 
file (or files) in the OFM-ACM and outputs 
completed nodes. It works by maintaining two 
stacks: one for nodes that have been created 
but not yet completed, and one for completed 
nodes. The generic OFM-ACM specification 
in table 1 will serve as an example of how the 
procedure works. When the filename 
“activity-l.ofm-acm” is passed to DUO’S 
construction procedure, the file is opened for 
reading. Comment lines are ignored, as are 
blank lines, so the first line read is ”{ activity- 

level-lactivity- 1 .” The left bracket signals the 
creation of a node instance whose name slot is 
filled with activity-1 and whose node-type slot 
is filled with activity-level-1. At the time the 
node is created, the construction procedure 
assigns the node a unique identifier. The iden- 
tifier is a number placed in the id-num slot. 
The construction procedure then reads the rea- 
son knowledge and creates a string used to fill 
the node’s reason slot as shown in figure 42. 
The procedure then encounters the conditions 
knowledge. Context specifier 3-tuples 
appearing after the active-when keywords are 
grouped into one sublist in the conditions slot; 
those following active-when-1 keywords are 
grouped into another sublist. Activity-type, 
agent, and automation-mode knowledge are 
inserted into the appropriate slots if applicable. 

The next piece of knowledge in the OFM- 
ACM specification file is “{ activity-level-2 
activity-2.” The left bracket again signals that 
new node should be created. The first node is 
therefore placed on the “not-yet-completed 
nodes” stack, and the next node is created 
according to the keywords in its specification. 
The identification number of the first node is 
placed in the uplinks list of activity-2 at this 
time to signify that activity-2 is part of the 
decomposition of activity- 1. 
When constructing the activity-2 node, the 
procedure encounters the “subfile” keyword. 

- 
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The occurrence of this keyword has the effect 
of placing the partially constructed activity-2 
node on the stack of not-yet-completed nodes. 
The procedure is then called recursively with 
the filename “lower-level-activity- 1 .ofm- 
acm.” To understand the recursive behavior 
of the construction procedure, the role of the 
right bracket must be examined. A right 
bracket indicates that all the knowledge 
required to specify the node and all of its sub- 
nodes has been read. When a right bracket is 
encountered, the partially completed node is 
removed from the stack of not-yet-completed 
nodes, and placed on the stack of completed 
nodes. At the same time, its identification 
number is placed on the downlinks list of the 
first node in the stack of not-yet-completed 
nodes. This signals to the procedure that it has 
returned to processing the higher-level node. 
Because all OFM-ACM specification files end 
with a right bracket, a “subfile” keyword 
results in all the information in the specified 
file being processed into completed nodes. 
Thus, when the procedure returns to the previ- 
ous level of recursion, all of the information in 
the subfiles has been processed. 
When DUO’s construction procedure 
encounters the line “{ activity-level-2 activity- 
3” in table 1, the stack of completed nodes 
contains activity-2 and all of its subnodes. The 
stack of not-yet-completed nodes contains 
activity-1 with the identification number of 
activity 2 already on its downlinks list. The 
same recursive procedure is then repeated: the 
new activity-3 node is instantiated, given an 
identification number, its conditions slot filled, 
its activity-type and agent slots filled, and the 
identification of the first node on the not-yet- 
completed stack (activity-1) is placed in the 
uplinks slot of activity-3. 
When the last right bracket in table 1 is 
encountered, all of the nodes in DUO have 
been instantiated with the exception of the 
node for activity-1, This final bracket signifies 
that activity-1 and all of its subnodes have 
been constructed, so activity-1 is finally placed 

on the list of completed nodes, and the 
procedure terminates. 
The lowest level nodes (i.e., actions) in the 
OFM-ACM representation are specified in the 
same manner as nodes at higher levels. Actions 
differ from other nodes in that they have no 
subnodes. Thus, they are specified beginning 
with a left bracket and ending with a right 
bracket, but there are no brackets signaling 
further decomposition nested within the action 
node specifi5ation brackets, and no subfile 
keywords, signaling a further decomposition is 
not specified in another file. 
During the construction procedure, nodes in 
DUO are assigned the initial status “inactive.” 
The process of assigning a status to a node has 
the side effect of placing the status, along with 
the time it was attained, on the node’s history 
list. Once constructed, DUO is ready to be 
used in the activity tracking process. 

DUO update procedure 
DUO encapsulates all the knowledge in the 
OFM-ACM and, furthermore, information 
about each activity’s status in the current 
operator-automation interaction. When an 
activity attains the status “active,” it is 
preferred in the current operating context, and 
is therefore expected to be performed by the 
operator. Thus, the process of updating DUO 
is the process by which GT-CATS produces 
expectations. DUO’s updating procedure is a 
recursive procedure similar to the construction 
procedure. 
Figure 43 illustrates how the DUO updating 
process proceeds according to the GT-CATS 
methodology. It works top-down, beginning 
with the highest level of activity (i.e., the phase 
level). It performs a breadth-first search, 
seeking nodes whose conditions are a proper 
subset of the current set of context specifiers. 
Nodes that meet this criterion are assigned 
active status. Nodes not meeting this criterion 
are assigned the status inactive. Inactive nodes 
are of no further interest in updating DUO; the 
statuses of all of their subnodes are 
immediately set to inactive (see figure 43). 
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Figure 43. The DUO updating procedure pares the search at each level. When a node is found to be 
inactive, all its subnodes are assigned the status inactive. The search for active nodes proceeds only 
beneath.active nodes at the previ&s level. 

The update process next searches for active 
subnodes of active nodes at the next highest 
level. The downlinks slot of a node identifies 
the subnodes of the node. The subnodes of 
active nodes are subjected to the updating 
process, which continues until nodes having no 
subnodes (i.e., actions) have been updated. 
As prescribed by the GT-CATS methodology, 
the DUO update procedure departs from the 
general process at the mode selection level. At 
themode-selection level, the procedure 
involves testing not only the context specifiers 
found in a mode-selection activity’s condi- 
tions slot, but also the information in the 
automation-mode slot, which indicates the 
mode that should be engaged in the controlled 
system if the operator has in fact chosen the 
mode. 
To reiterate (see figure 34), the rules to deter- 
mine the status of the activities at the mode 
selection level are as follows. In the first case, 
if the mode selection is active according to its 
conditions (i.e., its conditions are context 
specifiers that are a proper subset of the cur- 
rently active set of context specifiers), and the 
corresponding automation mode is also 
engaged in the controlled system automation, 

then the mode selection is active. In the second 
case, if the mode selection is active according 
to its conditions, and another applicable mode 
selection matches the engaged mode in the 
controlled system state, then the first mode is 
active and the second is (becoming) obsolete. 
In the third case, if the mode s.election’s auto- 
mation mode matches the engaged mode, then 
the mode selection is obsolete, and another 
mode is active according to its conditions. Of 
course, if none of the three cases applies, the 
mode selection is inactive. 
Insofar as the DUO updating procedure is 
concerned, an obsolete mode selection is 
treated like an active mode selection. Activities 
into which the obsolete mode are decomposed 
are still tested to see if they are active. The 
result of the application of this method is that 
activities that support monitoring the obsolete 
mode can be active at the same time as activi- 
ties that support setting up and engaging the 
expected new mode selection. This is because 
the context specifiers used as conditions in 
“monitor/adjust” task subtrees below the 
mode selection level require that the mode 
selection is engaged for the monitoring 

- 
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activities to be active-true by definition if the 
mode selection has status obsolete. 

IIII 

internal automation variables - -  

The state space 
The state space in GT-CATS is comprised of a 
collection of instances of state variables (see 
figure 44). A state variable represents knowl- 
edge about a particular variable in the con- 
trolled system. This knowledge includes the 
name of the state variable, its latest value, the 
time it was updated, and its previous value and 
update time. 

I 

Initialize 
State Space State Space 

State Space 
controlled system state variables 

control automation state variables I I - -  
I %% 

The state space required for activity tracking 
in a highly automated complex dynamic sys- 
tem has state variables of three classes, as 
shown in Figure 44: (1) controlled system state 
variables, which are basic system performance 

measures; (2) control automation state 
variables, which represent information about 
engaged or armed control modes, and target 
values that the automation is currently 
attempting to achieve; and (3) internal auto- 
mation variables, such as programmed target 
values or predictive information computed by 
the automation itself. 
The state space is constructed by instantiating 
state variables for each parameter. The state 
space is updated with new state information as 
it is received from the controlled system via 
the interface/parser. The update process 
involves replacing the previous value with the 
old latest value and inserting the new value in 
place of the old latest value. Time stamp 
information is similarly recorded. 

The Limiting Operating Envelope 
The limiting operating envelope (LOE) is rep- 
resented as structure with two parts (figure 45): 
(1) a short-term limit state, and (2) a series of 
long-term limit states. Each limit state consists 
of a set of state values to be achieved. The 
long-term limit states represent a series of 
desired limit states. The short-term limit state 
represents desired state values that override the 
values contained in the currently active long- 
term limit state. 
Initialization of the long-term limit states 
entails instantiating a limit state that contains 
the set of values required to specify each goal 
in a sequence of goals to be attained. The first 
long-term limit state in the sequence that has 
not already been achieved is called the “active 
limit state” (figure 45). The short-term limit 
state is initialized with any amendments to the 
initial active limit state. 
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Figure 45. The Limiting Operating Envelope. 

The GT-CATS LOE is updated in two ways: 
First, on each processing cycle, the latest state 
information is used to determine whether the 
active limit state has been achieved. If it has, it 
is designated “passed,” and the next long- 
term limit state becomes the active limit state. 
The second type of update addresses the short- 
term limit state. Whenever amended goals arise 
from changes in environmental constraints on 
system operation, the amended goal values 
replace the corresponding values in the short- 
term limit state. Thus, the updated LOE repre- 
sentation reflects both the currently active 
long-term limit state and any short-term modi- 
fications to it imposed by dynamic 
environmental constraints. 

Context specifiers 
Context specifiers are a crucial component of 
the GT-CATS activity tracking architecture. 
They transform knowledge from the state 
space and LOE into a summary of the current 
operational context, which then serves as the 
means for referencing the conditions in DUO 

under which a particular activity is expected 
(figure 46). Context specifiers are constructed 
at run-time, and are designated as active or 
not. 
The specific form used to represent context 
specifiers is not pivotal; any scheme that 
ensures unique context specifers, each with a 
specific connotation about the current opera- 
tional context, will suffice. The GT-CATS 
architecture was developed with context speci- 
fiers represented as 3-tuples (figure 47). The 
first element indicates the type of state variable 
that is referenced to construct the given con- 
text specifier. The second element is the 
specific state variable. The third element is a 
qualifier that indicates the relationship of the 
value of the particular state variable with 
respect to the desired value represented in the 
LOE (e.g., “within limits” or “outside 
limits”). These qualifiers are qualitative so that 
the overall set of current context specifiers 
provides a qualitative summary of the current 
operational context. 
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Figure 46. Context specifiers provide a dynamic summary of the current operational context, as a 
means of referencing the conditions in DUO. 

Figure 47. Activation of context specifiers. 

An unconventional case arises when a context 
specifier is needed to represent the aggregate 
relationship of several state variables vis a vis 
the LOE. This is necessary when a one-to-one 
mapping between the state space and a relevant 
component of the active limit state, or short- 
term modifications to it, does not provide the 

required context information. Such aggregate 
context specifiers are useful, for example, in 
determining the operational context that 
results from a number of internal automation 
variables. A generic example of such a context 
specifier is “automation-state profile-infor- 
mation programmed.” Here, several internal 
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automation variables are examined to amve at 
the summary context specifier. 

Context specifiers are activated based on 
information from updated state space and 
LOE representations. The GT-CATS architec- 
ture provides that the required comparisons 
are directly encoded-the state variables, 
limiting operating envelope elements, and tol- 
erances used to activate a context specifier are 
directly specified in code. This allows extra 
predictive functions to also be encoded if such 
information is not directly available in the state 
space. 

, 

The action manager 
The GT-CATS action manager plays an 
important role in the GT-CATS architecture. It 
handles all detected operator actions. It 
attempts to explain expected actions, explain 
unexpected actions, and detect errors. The 
action manager uses the GT-CATS controller 
to schedule events, accesses DUO to check to 
the status of activities, and updates DUO to 
reflect the state of operator-automation inter- 
actions. The functional relationship between 
the action manager, DUO, and the controller is 
shown in figure 48. 
The action manager’s first function is to 
explain expected operator actions (see figure 
48). When an action attains active status in 
DUO, it is expected. Thus, when an operator 
action is detected, the action manager first 
checks whether an action of the same type is 
active in DUO. The action manager uses gen- 
eral DUO access routines for this purpose. If 
the action is found to be expected, the action 
manager explains the action based on the 
structure of the OFM-ACM embodied in 
DUO; the action is explained as supporting the 
associated subtask, task, and mode selection in 
the OFM-ACM structure. At the time the 
explanation is produced, the action manager 
assigns the action the status “explained,” and 

the event to check whether the expected action 
has in fact been performed is cancelled. 
The action manager’s second function is to 
explain unexpected operator actions via the 
revision process. The action manager initiates 
the revision process upon detecting an opera- 
tor action that is not expected according to 
DUO. After first verifying that the action is not 
expected, the action manager identifies all 
instances of the action in DUO that can sup- 
port the expected function-level activity. After 
the action manager identifies one or more 
instances of the action that support the 
required function, the action manager sched- 
ules an event to attempt to produce an expla- 
nation for the unexpected operator action. 
The controller signals the action manager after 
the prescribed time interval to examine each of 
the instances of the unexpected action to find 
one that supports an alternative, but valid, 
mode selection. The action manager looks 
specifically to determine if a mode selection 
and supporting task that the action supports 
has become active in the time since the action 
was detected. To determine this, the action 
manager examines the history information 
contained in the corresponding nodes in DUO. 
If the action manager finds an instance of the 
action that meets this criterion, the action 
manager assigns the node a status of “revised- 
explained” and explains the action as sup- 
porting the task and mode selection it supports 
in DUO. Attempts to explain instances of the 
action not checked thus far are annulled. 
If the action manager cannot explain a 
detected action that has instances in DUO, the 
action may be in error. The action manager 
therefore issues a statement that it could not 
explain the detected action. Although the 
action manager does not positively identify 
operator errors, an action that it cannot explain 
through the revision process is identified as an 
error candidate. 

- 
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Figure 48. Relationship between the GT-CATS action manager, controller, and DUO. 

The action manager's last function is to check 
that actions expected according to DUO are in 
fact performed, or that alternative valid actions 
are performed in their place. When an action 
attains active status in DUO (and is, therefore, 
expected), the action manager schedules an 
event to check that the action has been per- 
formed. If neither the expected action nor a 
valid alternative has been detected in the time 
before the event is processed, the action 
manager issues an alert for a possible error of 
omission. If the action was superseded by an 
alternative, but valid, action, alerts for an error 
of omission related to the action originally 
expected are annulled. 

Control of processing in GT-CATS 
GT-CATS requires an interface/parser, output 
interface, and controller to coordinate real- 

time processing. The architecture includes an 
interface/parser that can accept input in real- 
time from a controlled system, or read logged 
data from an input file. The real-time interface 
includes a data port used to receive data. The 
port is polled for data, 'and when data are 
received, the data are parsed and processed. 
All data are time-stamped; this information is 
used to update the timing information of the 
GT-CATS controller. The data appearing after 
the time stamp identifies whether the data are 
updated state information, new environmental 
constraints, or operator action data. Simulator 
data of these types is sent to either the appro- 
priate updating procedure, or the action 
manager. The file interface operates in an 
analogous fashion; time-stamped data that 
would come from the simulator in real-time 
are simply read from a file. 
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The GT-CATS output interface has two com- 
ponents: a data file, and a real-time display. 
The file records all determinations made by 
GT-CATS. When actions are activated 
(expected) in DUO, an output file records the 
time the action was expected, and all other 
activities in DUO that are active at the time. All 
output from the action manager is similarly 
recorded. The manner in which explanations 
for actions are produced (i.e., from a prior 
expectation, or through the revision process) is ’ 

also logged. Possible errors of omission or 
commission are similarly logged. 
The GT-CATS real-time display shows the 
current status of all representations in the GT- 
CATS architecture. Windows for the state 
space and the LOE display the current values 
of state variables, and constraints from the 
LOE. Another window shows the status of 
nodes in the currently active phaselsubphase of 
DUO. Active nodes and explained actions are 
color-coded. Unexpected actions are also 
color-coded, as are successful revisions 
Another window shows output similar to that 
logged in the output file. 
The GT-CATS controller is responsible for 
scheduling and processing events according to 
its timing functions. The controller maintains a 
queue of events that are scheduled for later 
processing. When its timing functions indicate 
that an event is ready for processing, the 
controller calls the appropriate component of 
the GT-CATS architecture to perform the 
event. 
The GT-CATS controller uses a simple proc- 
essing cycle to coordinate updates to the state 
space, LOE, and DUO with action manager 
events. When new state information is received, 
the processing cycle schedules state space 
updates. These updates are processed, then the 
LOE is updated by checking whether the 
updated state information indicates that the 
active long-term limit state has been passed. 
After the LOE is updated, the controller 
initiates the DUO updating process using the 
new LOE and state space information. A new 
set of context specifiers is activated, and the 
DUO updating procedures use them to gener- 

ate expectations by determining which nodes 
in DUO have active status. 
The GT-CATS controller maintains an event 
queue for coordinating action manager events 
with the updating cycle. The action manager 
schedules events with controller in accordance 
with the time periods specified for detecting 
errors of omission or executing the revision 
process. When the controller processes these 
events the action manager is called upon to 
perform the required assessments and updates 
to DUO. - 

- 

GT-CATS compared with other 
intent inferencing systems 
Two intent inferencing systems developed pre- 
viously are OFMspert (ref. 4) and OPAL (ref. 
29), described in Chapter 11. GT-CATS’ activ- 
ity tracking methodology enhances the OFM- 
based intent inferencing approach embodied 
in OFMspert. OFMspert’s intent inferencing 
component, ACTIN, uses a blackboard archi- 
tecture. Given current system state, ACTIN 
posts functions, subfunctions, and tasks from 
the OFM on the blackboard. The intent infer- 
encing process involves mapping operator 
actions onto these OFM-derived functions, 
subfunctions, and tasks. A currently instanti- 
ated function corresponds to a current opera- 
tor goal; by linking actions to the functions, 
subfunctions, and tasks they can support, and 
assessing the blackboard to ensure temporal 
and semantic constraints on the connected 
actions are met, ACTIN produces an under- 
standing of the operator’s current intentions. 
GT-CATS’ OFM-ACM and processing 
scheme, in particular, differ from OFMspert. 
The OFM-ACM extends the OFM beyond 
functions, subfunctions, tasks, and actions, 
adding the mode-selection level and explicitly 
representing activities in mutually exclusive 
phases and subphases of system operation in 
the manner of Jones et al. (ref. 39) and 
Thurman and Mitchell (ref. 14). GT-CATS’ 
OFM-ACM is explicitly represented in easily 
editable files. 
GT-CATS instantiates its OFM-ACM in DUO. 
By using the currently active set of context 
specifiers to activate activities in DUO, GT- 
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CATS uses DUO itself to represent currently 
expected operator activities. Like ACTIN, GT- 
CATS understands actions by linking them to 
the mode selection, task, and subtask they sup- 
port. Unlike ACTIN, however, GT-CATS 
attempts to determine the precise next set of 
activities the operator will perform, rather than 
all feasible activities. In this way, GT-CATS 
predicts one mode selection an operator will 
use to perform a currently active function 
from among several available alternatives. 
GT-CATS also differs from ACTIN in the 
manner in which actions are explained by 
mapping them to the activities they support. 
ACTIN uses the concept of “maximal con- 
nectivity,” connecting an action to all feasible 
tasks that it might support. GT-CATS instead 
associates detected actions with a single 
predicted mode selection. In this manner, GT- 
CATS explains actions as supporting a 
preferred mode-one of several modes avail- 
able to the operator in the current situation. 
GT-CATS’ method of associating operator 
actions with only one mode selection 
necessitates a means for explaining actions that 
do not support the preferred mode. GT-CATS 
therefore includes the revision process to 
explain actions that it does not expect. The 
revision process enables GT-CATS to use 
updated state information to associate unex- 
pected actions with alternative operator mode 
selections. GT-CATS’ revision process can 
determine if an unexpected action is an 
operator error, or associated with an alterna- 
tive, but valid, mode. 
OPAL (ref. 29) uses a network of plans and 
goals, called a Plan-Goal Graph, to establish a 
hierarchy of operator activities. Like both GT- 
CATS and ACTIN, OPAL understands opera- 
tor actions by associating them with active 
plans and goals. OPAL differs in that it also 
uses scripts associated with some plans to rep- 
resent procedural activities. If an active plan 
has an associated script, OPAL first attempts to 
match actions to the script and explain them as 
supporting the represented procedure. This 
script-based reasoning simplifies the intent- 
inferencing process, as the next action( s) are 
specified in the script. 

If OPAL cannot match an operator action to a 
script, it attempts to explain the action by asso- 
ciating it to an active plan. Failing this, OPAL 
uses a procedure similar to the revision process 
used by GT-CATS: it uses the structure of the 
Plan-Goal Graph to attempt to locate other 
plans and goals that the action can support. 
OPAL identifies an action as a possible error if 
it does not support any plan applicable to the 
current- situation. 

Summary 
The GT-CATS methodology and supporting 
computer architecture are designed to track 
operator activities in real time. The OFM-ACM 
imparts a specific mode orientation to the 
OFM, to provide GT-CATS with the capability 
to understand operator actions in complex 
systems with multiple modes. GT-CATS uses 
the OFM-ACM to predict the mode selection 
and associated activities an operator will per- 
form in using a preferred mode selection to 
control the system in the current operating 
situation. 
GT-CATS explains operator actions according 
to its expectations where possible; if a mis- 
match exists between expected and actual 
actions, GT-CATS uses its revision process to 
attempt to explain a particular action as sup- 
porting an alternative mode applicable in the 
current situation. If GT-CATS does not detect 
any action that supports a mode applicable to 
perform a required control function, it indi- 
cates a possible error of omission; if a detected 
action cannot be associated with an applicable 
mode, the action is flagged as a possible error. 
The next chapter describes an implementation 
of GT-CATS to track the activities of pilots 
using modes to navigate in glass cockpit 
aircraft. 
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5. GT-CATS Implemented for the 
Glass Cockpit 

Introduction 
This chapter describes the proof-of-concept 
implementation of GT-CATS for the Boeing 
757/767 glass cockpit aircraft. Using an 
Om-ACM developed for Boeing 7571767 
pilots, GT-CATS predicts and interprets the 
actions pilots perform as they use the available 
automation modes to navigate. This chapter 
discusses how each of the components of GT- 
CATS architecture is instantiated for this 
application. First it describes the OFM-ACM 
developed for the Boeing 757/767. Next, it 
presents the state space and limiting operating 
envelope implementations. It then describes 
the context specifiers used in GT-CATS, and 
the use of these context specifiers as condi- 
tions in the OFM-ACM. The chapter next 
describes GT-CATS’ implementation of DUO. 
The GT-CATS action manager is then dis- 
cussed. The chapter concludes with examples 
of GT-CATS operation. 

OFM-ACM for the B757/767 
GT-CATS uses an OFM-ACM to model the 
activities of 757/767 pilots. The OFM-ACM 
decomposes the navigation task into phases, 
subphases, functions, mode selections, tasks, 
subtasks, and actions. Conditions to enable the 
expectation of each activity, along with activity 
type, agent, and reason information, complete 
the OFM-ACM. This discussion is divided into 
two parts. This first segment focuses on the 
decomposition of pilot activities. The second 
segment discusses how context specifiers are 
used to set up expectations for pilot activities. 

The reader unfamiliar with the operation of 
the Boeing 757/767 automation may refer to 
the description presented in Chapter 111. 

Structure of the OFM-ACM 
In developing the OFM-ACM, the flight was 
first divided into mutually exclusive phases 
and subphases (figure 49). Climb phase is 
decomposed into three-altitude-dependent 
subphases: climb-1000 (climb to 1,000 get), 
climb-3000 (climb to 3,000 feet), and climb- 
cruise (climb to cruise). In the climb-1000 
subphase, pilots fly the takeoff profile by 
manually tracking the flight director in takeoff 
and HDG HOLD modes. The crew configures 
the autopilot and autothrottle systems for the 
first time in the climb-3000 subphase, which 
begins at 1,000 feet. By the time the aircraft 
has reached an altitude of 3,000 feet, normal 
use of automation for climbing is established. 
The climb-cruise subphase of climb represents 
these functions. 
Cruise phase begins when the aircraft levels off 
at cruise altitude. Cruise phase is divided into 
two subphases, init-cruise (initiate cruise) and 
cruise-to-descent, that differ primarily in the 
descent briefing the pilots perform when 
aproaching the top of descent (T/D). When the 
top of descent is passed, the descent phase of 
flight commences. In the GT-CATS OFM- 
ACM, descent is divided into two subphases, 
init-descent (initiate descent) and descent-to- 
apprch (descent to approach). Like the sub- 
phases of cruise, the subphases of descent 
differ primarily in the approach preparations 
required during the latter subphase. The OFM- 
ACM decomposition of the flight into phases 
and subphases is shown in figure 50. 
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Figure 50. Phases and subphases in the GT-CATS OFM-ACM. 
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Figure 5 1. OFM-ACM decomposition of climb subphases into functions. 

The next step in structuring the OFM-ACM is 
to decompose each of the subphases into the 
functions that the crew performs (figures 51 
through 53). During the climb-1000 subphase, 
three navigation-related functions are 
required: turn-onto-hdg (turn onto a heading), 
hold-hdg (hold a heading), and climb-to-alt 
(climb to an altitude). 
The climb-3000 subphase is decomposed into 
five functions: turn-onto-hdg, hold-hdg, 
climb-to-alt, reconfig-aircraft (reconfigure the 
aircraft), and reconfig-autoflight (reconfigure 
the autoflight system). The two additional 
functions are important during the climb-3000 
subphase because the crew adjusts the aircraft 
configuration (i.e., flap settings, after takeoff 
checklist) from the takeoff configuration at 
this time, and configures the autoflight system 
(i.e., engaging an autopilot in CMD; setting 
climb thrust). 
In the climb-cruise subphase of the OFM- 
ACM, pilot functions focus solely on the use 

of automatic modes to navigate. The functions 
important during the climb-cruise subphase 
are: turn-onto-hdg, hold-hdg, climb-to-ah, and 
hold-alt (hold an altitude). The hold-alt func- 
tion is important above 3000 feet because 
ATC or published departure procedures may 
require temporary level-offs at altitudes below 
the cruise altitutude. Descend-to-alt (descend 
to an altitude) is not included as a function 
during climb phase, because a descent is not 
normally required during climb. 
When the aircraft levels offs at cruise altitude, 
the cruise phase of flight commences with the 
init-cruise subphase (see figure 52). This sub- 
phase may require pilots to perform the fol- 
lowing five functions: turn-onto-hdg, hold- 
hdg, step-climb-to-alt (step-climb to an 
altitude), hold-ah, and step-descent-to-alt 
(step-descent to an altitude). Step climbs and 
step descents are a means of changing the 
planned cruise altitude (i.e., “stepping” up or 
down to a new cruise altitude) as required by 
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ATC or weather considerations. The cruise-to- 
descent subphase includes an additional pilot 
function for reconfiguring the aircraft. The 
reconfig-aircraft function involves completing 
the descent checklist prior to the top of 
descent. 
When the aircraft reaches the top of descent, 
the flight enters the descent phase (see figure 
53). The first subphase of the descent phase, 
init-descent, is decomposed into turn-onto- 
hdg, hold-hdg, descent-to-alt, and hold-ah. 
The descent-to-apprch subphase also has a 
reconfig-aircraft function that encompasses 
approach preparations; because the required 
activities are not detectable, and because simi- 
lar functions in the climb phase were deemed 
sufficient to demonstrate how GT-CATS tracks 
activities not related to mode selections, this 
function was represented by a place-holder in 
the GT-CATS OFM-ACM. 

tainty as to which functions the pilots should 
perform at a particular time. 
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Figure 53. OFM-ACM decomposition of 
descent subphases into functions. 
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Figure 52. OFM-ACM decomposition of cruise 
subphases into functions. 

An important requirement of the function 
decomposition is that the functions are 
uniquely determinable. As discussed in the 
Chapter IV, this means that there is no uncer- 

The GT-CATS OFM-ACM has functions 
related to controlling lateral profile (i.e., turn- 
onto-hdg and hold-hdg) and vertical profile 
(Le., climb-to-alt, descend-to-alt, and hold-alt). 
One function from each set is always active at 
any given time (e.g., the pilot will never want 
to turn and hold a heading simultaneously). A 
lateral control function is always active con- 
currently with a vertical control function, but 
there is no ambiguity concerning which lateral 
and vertical control functions should be active. 
Figures 51 through 53 illustrate how the OFM- 
ACM decompositions of subphases into func- 
tions follow this principle. 
The level of abstraction below the function 
level in GT-CATS’ OFM-ACM is the mode 
selection level. At the mode selection level, 
each of the functions is decomposed into the 
mode selections available for performing them 
using the 757/767 automation modes (figures 
54 through 60). Functions that are not sup- 
ported by automation modes are not decom- 
posed into mode selections; for example, 
functions that address reconfiguring the air- 
craft and autoflight systems are decomposed 
directly into required tasks, so no mode selec- 
tions are shown to support them in figure 55. 
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Figure 55. OFM-ACM decomposition of functions into mode selections in the climb-3000 subphase. 

Depending on the subphase, the crew may 
have different mode selections available for 
accomplishing the same functions. For the 
climb- 1000 subphase, fd-hdg-sel-turn (flight 
director HDG SEL turn), fd-hdg-hold (flight 
director HDG HOLD), and fd-takeoff-climb 
(flight director TO climb) are the only mode 
selections available to perform the respective 
functions. For navigation functions during the 
climb-3000 subphase (figure 55) ,  a range of 
mode selections is available, depending on 
when an autopilot is engaged in command 
mode (CMD). The turn-onto-hdg function can 
be accomplished by fd-hdg-sel-turn or, after 
CMD mode engagement, hdg-sel-turn (HDG 
SEL turn) or Inav-turn (LNAV turn). The 
hold-hdg function is decomposed into fd-hdg- 
hold, hdg-hold-hold (HDG HOLD hold), Inav- 

hold (LNAV hold), or hdg-sel-hold (HDG 
SEL hold). A range of vertical axis modes 
similarly become available during the climb- 
3000 subphase (see figure 55).  Besides fd- 
takeoff-climb, the mode selections fl-ch-climb 
(FL CH climb), vnav-spd-climb (VNAV SPD 
climb), vs-climb (V/S climb), and auto-alt-cap- 
climb (automatic ALT CAP climb) are avail- 
able. Although the crew never actually 
“selects” ALT CAP mode (because it always 
engages automatically), it is included at the 
mode selection level of the OFM-ACM. This 
allows the auto-alt-cap-climb mode selection 
to be decomposed into monitoring tasks 
required to monitor the operation of ALT 
CAP as it completes the climb-to-alt function 
begun with another mode selection. 
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Figure 56. OFM-ACM decomposition of hnctions into mode selections in the climb-cruise subphase. 

The climb-to-alt function for the climb-cruise 
subphase are decomposed into the same mode 
selections as those available for use in the 
climb-3000 subphase following autopilot 
CMD mode engagement. In the climb-cruise 
subphase, however, the hold-alt function is 
introduced (see figure 56). The hold-alt func- 
tion is decomposed into the mode selections 
alt-hold-hold (ALT HOLD hold), vnav-path- 
hold (VNAV PTH hold), and vs-hold (VIS 
hold). The vnav-path-hold mode selection 
reflects a possible automatic VNAV transition 
to the VNAV PTH submode from the VNAV 
SPD submode, if VNAV levels the aircraft to 
meet a FMS-programmed waypoint crossing 
restriction. Both the alt-hold-hold and vnav- 
path-hold mode selections may be manually 
engaged by the pilot, or automatically 
engaged by the AFDS (vnav-path-hold as just 
discussed; alt-hold-hold via a mode transition 
from ALT CAP mode to ALT HOLD mode). 
The vs-hold mode selection represents the pos- 
sibility of selecting a vertical speed of zero on 
the MCP while in V/S mode. 
In the GT-CATS OFM-ACM, the mode selec- 
tion alternatives for the turn-onto-hdg and 
hold-hdg functions are available in each sub- 

phase of flight after their introduction in the 
climb-3000 subphase. Mode selections per- 
taining to vertical axis modes in the descent 
phase are analogous to those in the climb- 
cruise subphase (see figures 57 and 58). 
Instead of fl-ch-climb, vnav-spd-climb, vs- 
climb, and auto-alt-cap-climb, the alternatives 
are fl-ch-descent, vnav-descent, vs-descent, and 
auto-alt-cap-descent. A notable difference in 
these decompositions is the unspecified sub- 
mode information in “vnav-descent.” Both 
VNAV PTH and VNAV SPD are available in 
descent, but they are not distinguished in the 
decomposition. The reason for this is twofold: 
first, the distinction is not important in pre- 
dicting manual operator actions (i.e., the same 
set is applicable to either VNAV PTH or 
VNAV SPD); second, as discussed in detail 
later, the set of context specifiers as imple- 
mented cannot predict when a transition 
between VNAV F’T” and VNAV SPD will 
occur. 
The GT-CATS OFM-ACM models the cruise 
phase of flight as having climb-to-altitude, 
hold-altitude, and descend-to-altitude func- 
tions. In the mode selection decompositions 
these functions (see figures 59 and 60), the 

of 
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vnav-step-climb and vnav-step-descent mode 
selections represent the use of VNAV to 
change a cruise altitude by reprogramming the 
CDU according to FMS-computed projections 
about fuel economy at different cruise 
altitudes. 
Each mode selection in GT-CATS’ OFM- 
ACM is decomposed into the tasks required to 
use the corresponding 757/767 automation 
modes. As figure 61 shows, using FL CH as an 
example, mode selections are commonly 
organized in to “setup/engage” and 
“monitor/adjust” tasks. Two subtasks com- 
prise the setup-eng-fl-ch task: set-mcp-alt (set 
the MCP altitude) and eng-fl-ch (engage FL 
CH). The set-mcp-alt subtask is supported by 
the action dial-mcp-alt (dial the MCP altitude 
knob). The eng-fl-ch subtask is supported by 
the push-fl-ch-sw (push MCP FL CH switch) 
action. Four subtasks comprise the mon-adj-fl- 
ch-climb task: mon-fl-ch-climb-profile 
(monitor FL CH climb profile), adjust-mcp-alt 
(adjust the MCP altitude), adjust-mcp-ias 
(adjust the MCP indicated airspeed), and mon- 
fl-ch-engd (monitor that FL CH is engaged). 
The mon-fl-ch-engd (monitor FL CH 
engaged) subtask is supported by the action 
mon-fl-ch-adi-annc (monitor the FL CH AD1 
annunciator). 
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I/ hdg-rel-hold 1 

11-ch-deasent 
init-descent 
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hold-a11 vnav-path-hold 
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Figure 57. OFM-ACM decomposition of func- 
tions into mode selections in the init-descent 
subphase. 
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Figure 58. OFM-ACM decomposition of 
functions to mode selections in the descent- 
to-apprch subphase. 

(urn-onto-hda 

Figure 59. OFM-ACM decomposition of init- 
cruise subphase functions into mode 
selections. 

The remaining subtasks of the mon-adj-fl-ch- 
climb subtask illustrate key features of the 
OM-ACM modeling approach. First, two 
important adjustments can be made to FL CH 
once the mode is engaged. If ATC clears the 
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Figure 60. OFM-ACM decomposition of cruise-to-descent functions into mode selections. 
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Figure 61. Tasks, subtasks, and actions supporting the fl-ch-climb mode selection. 

aircraft to higher altitude before FL CH transi- 
tions to ALT CAP (to capture the previously 
cleared altitude), a pilot can adjust the MCP 
altitude and continue the climb in FL CH. This 
adjust-mcp-alt subtask is supported by a dial- 
mcp-alt action. Another aspect of FL CH 
mode usage involves the autopilot SPD mode 
that engages when FL CH engages. Upon FL 

CH mode engagement, the MCP speed window 
displays the current airspeed. Pilots are trained 
to adjust the airspeed using the MCP speed 
knob following FL CH mode engagement. 
Thus, the mon-adj-fl-ch-climb task also has a 
adjust-mcp-ias subtask, supported by a dial- 
mcp-ias action. 
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Figure 62. Cognitive, verbal, and perceptual actions that also support the set-mcp-alt subtask of the 
setup-eng-fl-ch task. 

The mon-fl-ch-climb-profile subtask is not 
further decomposed in the GT-CATS O m -  
ACM, because none of the actions required to 
monitor the profile are manual. It is nonethe- 
less included in deference to its importance to 
the mon-adj-fl-ch-climb task. A similar mod- 
eling perspective leads to the decomposition of 
tasks into subtasks supported by a single 
action. These subtasks are also supported by 
various cognitive, perceptual, and/or verbal 
actions. Figure 62 shows, for example, actions 
involved with the subtask set-mcp-alt. Besides 
the manual dial-mcp-alt, the decomposition 
could include a cognitive action to determine 
the altitude that should be set, verbal confir- 
mation actions from both the PF and PNF, and 
similar confirmations that the altitude was 
indeed set correctly. Many such actions were 
omitted from the GT-CATS OFM-ACM for 
parsimony. Others were included to demon- 
strate that GT-CATS can effectively expect 
these actions. The complete GT-CATS OFM- 
ACM for the 757/767 glass cockpit is 
illustrated in Appendix B. 

State space 
The GT-CATS state space is a collection of 
757/767 state variables. The GT-CATS state 
space represents general system state variables 
(aircraft state), control automation state vari- 
ables (Autoflight System (AFS) state, i.e., 
MCP-selected target values and engagedarmed 
modes), and internal automation variables 
(FMS state). These elements of the GT-CATS 
state space are depicted in figure 63. 
The GT-CATS state space is constructed by 
instantiating state variables for each parameter. 

Figure 5-16 shows each of the 757/767 state 
variables used in GT-CATS. Seven state vari- 
ables represent aircraft state: hdg (heading), 
msl-alt (mean sea level altitude), agl-alt (above 
ground level altitude), spd (airspeed), vs 
(vertical speed), lat (latitude), and long 
(longitude). 

\ 

FMSS 

Aircrafi State 

Figure 63. State space elements represented in 
GT-CATS’ 757/767 state space. 

Eleven AFS state variables represent the state 
of the 757 control automation (see figure 64). 
Five of these represent the armedengaged 
modes: roll-engd (engaged roll mode), roll- 
armed (armed roll mode), pitch-engd 
(engaged pitch mode), pitch-armed (armed 
pitch mode), auto-thr-engd (engaged 
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autothrottle mode). Two others represent 
autopilot and autothrottle status: cmd-mode 
(autopilot status-F/D or CMD mode) and tsp 
(autothrottle thrust limit se lec ted4LB (climb 
thrust) or not). The remaining four AFS state 
variables reflect values selected on the MCP: 
mcp-hdg (MCP-selected heading), mcp-alt 
(MCP-selected altitude), mcp-spd (MCP- 
selected airspeed), and mcp-vs (MCP-selected 
vertical speed). 
Ten additional state variables represent internal 
FMS variables. The first two (see figure 64) 
are vnav-tgt-alt (VNAV target altitude) and 
vnav-tgt-spd (VNAV target speed). These state 
variables represent the next altitude and speed 
that the FMS is programmed to attain in 
VNAV mode. These target values may be 
associated with a waypoint crossing restriction 
or the programmed cruise altitude and cruise 
speed. The vnav-spd-int (VNAV speed inter- 
vention submode) state variable indicates 
whether the VNAV speed intervention 
submode is in use. As discussed earlier in this 
chapter, when VNAV speed intervention is in 
use, the MCP-selected airspeed (represented by 
the mcp-spd state variable) overrides the FMS- 
programmed airspeed (represented by the 
vnav-tgt-spd variable) as the speed that VNAV 
tracks. 
The next three FMS state variables help to 
identify the aircraft’s phase of flight. These 
are toc-passed (top-of-climb passed or not), 
tod-passed (top-of-descent passed or not), and 
vnav-event-dist (VNAV event distance). The 
vnav-event-dist variable indicates the distance 
to a VNAV “event,” defined as when the 
aircraft passes a VNAV-computed point (Le., 
top-of-climb, top-of-descent, or end-of- 
descent). Thus, vnav-event-dist indicates, for 
example, the distance to the top-of-descent, if 
the the top-of-climb point has already been 
passed. 
Four additional FMS state variables represent 
important information about the aircraft’s 
position relative to the programmed FMS 
route. 

name: lat 
value: 33.633 
update time: 12457 
prev value: 33.764 
pmv update time: 12452 

J 

AFS state variables 

pitcharmed 

internal FMS variables 

past-last-wpt 

Figure 64. State variables in the GT-CATS 
state space. 

These are on-track (on the LNAV track 
programmed in the FMS or not), active-wpt 
(the FMS active waypoint), next-wpt (the FMS 
waypoint following the active waypoint), and 
past-last-wpt (past the last FMS waypoint, 
signaling a route discontinuity, i.e., a condition 
where there are no waypoints programmed 
between the aircraft’s current location and the 
start of the approach, or not). The on-track 
variable indicates whether LNAV is tracking 
the programmed route, and the remaining 
variables reflect the location of the aircraft 
along the programmed route. 
Each of the GT-CATS state variables are 
updated when GT-CATS receives time- 
stamped update data. As shown in figure 64, 
the previous values and update times are 
recorded with each new update. The variables 
comprising the GT-CATS state space, together 
with the LOE, play a crucial role in generating 
context specifiers. The GT-CATS LOE is 
discussed in the next subsection. 

Limiting Operating Envelope 
The GT-CATS LOE represents constraints 
imposed by the 757/767 operating 
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environment. Constraints stem from three 
sources: ATC, the route the aircraft is 
scheduled to fly, and guidelines for general 
aircraft operation (figure 65). During normal 
operation these sources constrain typically 
operation more than the operating capabilities 
of the airplane itself, so they define the 
limiting operating envelope. 
The programmed route represents the con- 
straints from the flight plan (e.g., depart from 
airport KLAX, cross VTU, etc.). In GT-CATS, 
the flight plan route is assumed to be pro- 
grammed correctly in the FMS; without this 
assumption, a copy of the actual programmed 
route would need to be included in the FMS 
state space to be compared against the flight 
plan in the LOE. This assumption allows for a 
parsimonious representation of the pro- 
grammed route information. 

ATC ‘ II 
Clearances 

Operational 
Guidelines 

Programmed Route 

Figure 65. Sources of constraints represented 
in the GT-CATS LOE. 

Another important assumption concerns the 
operational guidelines for flying the 757/767. 
In GT-CATS, operational guidelines, such as 
the 250 knot/10,000 feet speedaltitude restric- 
tion shown in figure 65, are assumed to be 
correctly programmed in the FMS. This is 
generally the case; thus, the assumption per- 
mits GT-CATS’ LOE to omit an explicit rep- 
resentation of operational guidelines, because 
the guidelines are part of the programmed 
route. 
Figure 66 shows GT-CATS LOE for the 
757/767 domain. The LOE consists of two 

elements: ATC limits, and the programmed 
route. ATC limits are the “short-term” limit 
states of the LOE; the programmed route is the 
sequence of “long-term” limit states. The 
ATC limits include any binding values for 
cleared heading, cleared altitude, cleared 
speed, cleared vertical speed (although vertical 
speed clearances are unusual), and whether the 
aircraft is to intercept the programmed route. 
In determining the binding constraints repre- 
sented by the LOE, ATC limits override the 
long-term “active-limit-state.” 
The programmed route has three components, 
as shown in figure 66: airports (the origin and 
destination airports for the flight), a waypoint 
list (a list of the planned waypoints along the 
flight path), and speeaaltitude restrictions. A 
speeaaltitude restriction can either be associ- 
ated with a waypoint (e.g., cross RMG at 250 
knots/8,000 feet), or not (e.g., do not exceed 
250 knots below 10,OOO feet). The waypoint 
structure in GT-CATS therefore includes a slot 
for an associated crossing restriction. GT- 
CATS determines the next speedaltitude 
restriction by using the “phase” slot of the 
particular speedaltitude restriction in conjunc- 
tion with the limit altitude at the restriction. 
The GT-CATS LOE is updated on each proc- 
essing cycle. An update seeks to determine if 
the currently active limit state has been passed. 
If so, GT-CATS uses the “passed” slot to 
indicate that the limit state no longer con- 
strains the flight. As figure 66 shows, to 
implement the LOE for both a lateral and ver- 
tical profile, the concept of active limit state is 
extended so that the active limit state has a 
lateral component (Le., the active waypoint), 
and a vertical component (i.e., the binding 
speeaaltitude restriction). These two compo- 
nents are both considered in the update proce- 
dure. As an example, the speeaaltitude 
restriction in figure 66 that is not associated 
with a waypoint is 250 knots/10,000 feet 
during cl imb-do not exceed 250 knots below 
10,000 feet. If the waypoint crossing 
restriction shown in figure 66 is 240 
knots/8,000 feet during descent, then the climb 
restriction will become part of the active limit 
state first. 
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Figure 66. The GT-CATS LOE. 

The active limit state, which includes a 
waypoint, and the next applicable 
speed/altitude restriction, represents the current 
goals for the flight-unless ATC intervenes. 
ATC may issue a clearance for the aircraft to 
fly a heading that takes it off the LNAV route 
programmed in the FMS; ATC may also issue 
a clearance for the aircraft to hold at an inter- 
mediate altitude. These ATC directives are 
encapsulated in the ATC limits portion of the 
LOE, and always override their corresponding 
portion of the active limit state when the LOE 
is used to generate context specifiers. 

Context Specifiers 
Context specifiers are an important component 
of the GT-CATS activity tracking process 
because they form the link between the state 
space, LOE, and the conditions from the OFM- 
ACM instantiated in DUO. Context specifiers 

are generated, in most cases, by comparing 
information from the state space to informa- 
tion from the LOE. These same context speci- 
fiers are used as conditions for activating 
nodes in DUO to generate expectations and 
explanations. The following subsections 
describe the context specifiers used in GT- 
CATS. 

Context Specifiers activated using aircraft 
state variables 
GT-CATS uses the following four context 
specifiers associated with the aircraft state vari- 
able msl-alt (mean sea level altitude): 

(acrft-state alt above-limits) 
(acrft-state alt within-limits) 
(acrft-state alt below-limits) 
(acrft-state alt outside-limits). 
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They are important for determining when the 
functions corresponding to climbing, 
descending, and holding altitude are active. 
Altitude is “within-limits” when, in the case 
where a crossing restriction at a downpath 
waypoint is the binding constraint on altitude, 
altitude is no more than 60 feet above or 50 
feet below the limit altitude. When no such 
crossing restriction is binding, altitude is 
“within-limits” when the altitude is no more 
than 60 feet above or 50 feet below the cleared 
altitude. Altitude is “outside-limits” and 
either “above-limits’’ or “below-limits” at all 
other times. 
GT-CATS also activates the following twb 
additional context specifiers from the aircraft 
state variable msl-alt. They are used as a 
heuristic for expecting a V/S mode-selection, 
based on the notion that V/S mode is good for 
small adjustments in altitude, and smoothing 
altitude acquistions. GT-CATS compares the 
variable msl-alt to the cleared altitude to 
generate one of these: 

(acrft-state alt more-than-2000-ft-from-tgt) 
(acrft-state alt less-than-2000-ft-from-tgt). 

GT-CATS activates the next five context 
specifiers from the aircraft state variable agl- 
alt (above ground level altitude): 

(acrft-state abs-alt above-origin-apt) 
(acrft-state abs-alt at-or-above- 1000) 
(acrft-state abs-alt at-or-above-3000) 
(acrft-state abs-alt at-or-below-1000) 
(acrft-state abs-alt at-or-below-3000). 

These context specifiers are important for 
determining when a particular subphase is 
active. Because the value of the agl-alt state 
variable is dependent on the terrain, these 
context specifiers are subject to some 
variation. 
GT-CATS activates two important context 
specifiers from the aircraft state variable hdg 
(heading): 

(acrft-state hdg within-limits) 
(acrft-state hdg outside-limits). 

These context specifiers are used for activating 
either “turn-onto-heading” or “hold- 
heading” functions. GT-CATS uses two 
different methods to activate one of these, 
depending on whether there is a cleared 
heading specified in the ATC limits portion of 
the LOE or not. If a cleared heading is given, 
then heading is “within-limits’’ when the 
aircraft heading is within plus-or-minus 0.5 
degrees of the cleared heading. If a route 
intercept on a heading left to pilot discretion is 
required, GT-CATS uses predictive functions 
to produce “within-limits” context specifiers 
when the heading intercepts the programmed 
route, or the heading matches the course to the 
next waypoint. 
GT-CATS activates two context specifiers from 
aircraft state variable spd (airspeed): 

(acrft-state spd within-limits) 
(acrft-state spd outside-limits). 

These context specifiers summarize the rela- 
tion between the aircraft airspeed and the 
cleared speed, or if there is no cleared speed 
specified, the VNAV target speed. They are 
useful for determining when speed adjust- 
ments are expected in DUO. Note that the 
VNAV target speed variable is just a shortcut 
to accessing the speeaaltitude restriction that is 
part of the LOE’s active limit statein the LOE. 

Context Specifiers activated using autoflight 
system state variables 
Context specifiers activated from autoflight 
system (AFS) state variables express the possi- 
ble mode configurations. At a given time, the 
context specifier that corresponds to the state 
of the variable is activated, along with the 
appropriate “not-” context specifiers, since 
the possible engaged and armed modes are 
mutually exclusive. These context specifiers 
are important for expecting mode selection 
and setup. GT-CATS does not require the 
LOE to activate these context specifiers. 
GT-CATS can activate eight context specifi- 
ers from the AFS state variable roll-engd 
(engaged roll mode). These context specifiers 
summarize the engaged roll mode conditions 
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(“to” means “Takeoff mode,” a specialized 
mode used during takeoff): 

(afs-state roll-engd to) 
(afs-state rolI-engd not-to) 
(afs-state roll-engd hdg-sel) 
(afs-state roll-engd not-hdg-sel) 
(afs-state roll-engd lnav) 
(afs-state roll-engd not-lnav) 
(afs-state roll-engd hdg-hold). 

As an example of how most AFS state context 
specifiers work, consider the following: if roll- 
engd is HDG SEL, GT-CATS activates the 
(afs-state roll-engd hdg-sel) context specifier, 
along with (afs-state roll-engd not-lnav), (afs- 
state roll-engd not-hdg-hold), and (afs-state 
roll-engd not-to). Thus, GT-CATS activates 
context specifiers that reflect which mode is 
engaged, along with context specifiers that 
reflect the fact that all mutually exclusive 
modes are not engaged. 
GT-CATS uses the AFS state variable roll- 
armed (armed roll mode) in a similar manner. 
These context specifiers summarize the armed 
roll mode conditions: 

(afs-state 
(afs-state 
(afs-state 
(afs-state 

roll-armed to) 
roll-armed not-to) 
roll-armed lnav) 
roll-armed not-lnav). 

From the AFS state variable pitch-engd 
(engaged pitch mode), GT-CATS activates the 
following context specifiers to summarize the 
engaged pitch mode conditions (again, “to” 
means takeoff mode; “vs” means vertical 
speed): 

(afs-state pitch-engd to) 
(afs-state pitch-engd not-to) 
(afs-state pitch-engd vnav-path) 
(afs-state pitch-engd not-vnav-path) 
(afs-state pitch-engd vnav-spd) 
(afs-state pitch-engd not-vnav-spd) 
(afs-state pitch-engd vnav) 
(afs-state pitch-engd not-vnav) 
(afs-state pitch-engd vs) 
(afs-state pitch-engd not-vs) 
(afs-state pitch-engd alt-hold) 

(afs-state pitch-engd not-alt-hold) 
(afs-state pitch-engd spd) 
(afs-state pitch-engd not-spd) 
(afs-state pitch-engd alt-cap) 
(afs-state pitch-engd not-alt-cap) 

GT-CATS activates the following context 
specifiers to predict capture of the cleared 
altitude given in the LOE; thus, these context 
specifiers involve the use of both an AFS state 
variable and the LOE. The first indicates that 
the aircraft is capturing the altitude required 
according to the LOE; the second indicates 
that the aircraft is capturing a different 
altitude: 

“ 

- 

(afs-state pitch-engd alt-cap-rqd-alt) 
(afs-state pitch-engd not-alt-cap-rqd-alt). 

Two context specifiers are activated using the 
AFS staie variable pitch-armed (armed pitch 
mode). These context specifiers summarize the 
armed pitch mode conditions: 

(afs-state pitch-armed vnav) 
(afs-state pitch-armed not-vnav). 

Ten context specifiers are activated from AFS 
state variable auto-thr-engd (engaged 
autothrottle mode). These context specifiers 
summarize the conditions relating to the 
engaged autothrottle mode: 
(afs-state athr-engd n l )  
(afs-state athr-engd not-n1) 
(afs-state athr-engd thr-hold) 
(afs-state athr-engd not-thr-hold) 
(afs-state athr-engd fl-ch) 
(afs-state athr-engd not-fl-ch) 
(afs-state athr-engd idle) 
(afs-state athr-engd not-idle) 
(afs-state athr-engd spd) 
(afs-state athr-engd not-spd). 

GT-CATS activates four context specifiers 
from the AFS state variable cmd-mode 
(autopilot command mode). These context 
specifiers indicate the current command mode 
of the autopilot: 

(afs-state cmd-mode fd) 
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(afs-state cmd-mode not-fd) 
(afs-state cmd-mode cmd) 
(afs-state cmd-mode not-cmd). 

Even though the flight director is normally 
always on, GT-CATS considers flight director 
and autopilot CMD mode to be competing 
modes because the flight director is not 
required to use CMD mode. 
The last set of context specifiers GT-CATS 
produces to reflect the status of 7571767 
autoflight modes are activated from AFS state 
variable tsp (thrust select panel). These context 
specifiers indicate whether the pilot has 
selected climb thrust or not: 

(afs-state tsp clb) 
(afs-state tsp not-clb). 

The remaining context specifiers activated 
from AFS state variables reflect the MCP- 
selected values of heading, altitude, airspeed, 
and vertical speed, relative to cleared values 
from the LOE, rather than the status of modes. 
These context specifiers activated from the 
AFS state variable mcp-spd (MCP-selected 
airspeed) summarize whether the MCP speed 
reflects a target speed specified in the LOE: 

(afs-state mcp-spd within-limits) 
(afs-state mcp-spd outside-limits). 

Similarly, two context specifiers summarize 
whether the MCP heading matches the cleared 
heading specified in the LOE. GT-CATS uses 
the AFS state variable mcp-hdg (MCP-selected 
heading) to activate these: 

(afs-state mcp-hdg within-limits) 
(afs-state mcp-hdg outside-limits). 

GT-CATS uses the AFS state variable mcp-alt 
(MCP altitude) to activate these context 
specifiers to summarize whether the MCP 
altitude reflects the cleared altitude specified in 
the LOE: 

(afs-state mcp-alt within-limits) 
(afs-state mcp-alt outside-limits). 

Also, GT-CATS uses mcp-vs (MCP vertical 
speed) to activate context specifiers that sum- 
marize whether the MCP vertical speed is 
properly set: 

(afs-state mcp-vs within-limits) 
(afs-state mcp-vs outside-limits). 

These vertical speed context specifiers are 
rarely needed, because ATC seldom issues 
clearances that specify a particular vertical 
speed. 

Context Specifiers activated to summatize 
FMS state 
GT-CATS uses a number of context specifiers 
to summarize the operating context in light of 
FMS state variables. The first set of these are 
activated from the FMS state variable vnav-tgt- 
alt (VNAV target altitude). These context 
specifiers indicate whether the programmed 
vertical profile corresponds to the current 
desired altitude, as expressed by either a 
restriction in the active limit state of the LOE, 
or the cleared altitude: 

(fms-state vert-profile progrmd) 
(fms-state vert-profile not-progrmd). 

These context specifiers are important as 
conditions for using VNAV, because VNAV 
cannot be used if a valid vertical profile is not 
programmed. 
GT-CATS generates the following two context 
specifiers from the FMS state variable vnav- 
tgt-spd (VNAV target speed). These context 
specifiers summarize whether the current FMS 
target speed is consistent with the current 
cleared speed, or the active limit state speed: 

(fms-state tgt-spd within-limits) 
(fms-state tgt-spd outside-limits). 

The remaining FMS-related context specifiers 
concern the capability of the FMS, as pro- 
grammed, to fly the desired lateral profile. 
GT-CATS activates them using predictive 
functions that compute whether the pro- 
grammed route is consistent with the current 
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clearance and whether the current heading 
intercepts the programmed route: 

(fms-state lat-profile progrmd) 
(fms-state lat-profile not-progrmd) 
(fms-state lat-profile-intcpt progrmd) 
(fms-state lat-profile-intcpt not-progrmd) 

These context specifiers are useful as condi- 
tions for using LNAV rather than HDG SEL 
mode to fly the lateral profile. 

Context Specifiers activated to summarize 
phase of flight 
GT-CATS requires one more set of context 
specifiers to use as conditions for activating a 
particular phase and subphase of flight. These 
context specifiers stem from the aircraft state 
variables msl-alt (Mean Sea Level Altitude) 
and agl-alt (Above ground level altitude), as 
well as the FMS state variable vnav-event-dist 
(VNAV event distance): 

(current-phase climb in-progress) 
(current-phase cruise in-progress) 
(current-phase descent in-progress) 
(aircraft-position less-than-5-miles-to top-of- 
descent) 
(aircraft-position more-than-5-miles-to top- 
of-descent) 
(aircraft-position less-than-5-miles-to end-of- 
descent) 
(aircraft-position more-than-5-miles-to end- 
of-descent) 

Overall, this set of context specifiers is suffi- 
cient for representing the conditions used in 
the GT-CATS OFM-ACM for the 757/767. In 
the next subsection, GT-CATS’ DUO, con- 
structed from the 757/767 OFM-ACM, is 
described. 

Dynamically Updated OFM-ACM 
(DUO) 
DUO provides GT-CATS’ representation of 
current pilot activities. DUO is instantiated 
from the OFM-ACM as described in the previ- 
ous chapter. The OFM-ACM file structures 

used to instantiate DUO are collected in 
Appendix C. 

DUO is updated on each processing cycle to 
reflect the current state of pilot-automation 
interaction. The first step in GT-CATS’ DUO- 
updating process is to activate a complete of 
set of context specifiers using the current state 
space and LOE. GT-CATS then searches DUO 
to determine which nodes in DUO should 
attain active (or obsolete) status. 

Action manager 
The GT-CATS action manager handles 
detected pilot actions. It works as described in 
the previous chapter, with one exception. In 
implementing GT-CATS for the Boeing 
757/767, it became necessary to track two dis- 
tinct types of actions. The GT-CATS action 
manager handles the first type (mode switch 
presses) in the general manner. The Boeing 
757/767, however, also has the knobs used to 
select values on the MCP. GT-CATS’ action 
manager was therefore extended to also detect 
when these actions were performed as 
expected, but an incorrect value was set. 

* 

In GT-CATS, these so-called “wrong-setting 
actions” are handled through an initial check 
of the MCP-selected value against the limiting 
operating envelope. When a “dial-” action is 
detected, an active instance of the action is first 
located in DUO (as with all actions). The 
MCP-selected value is checked and, if correct, 
the action is explained in the usual way. If the 
value is not correct, the action is assigned the 
status “explained-wrong-setting” to indicate 
that the action was expected, and could be 
explained as correct if not for the wrong value 
being set. The effect of the new status desig- 
nator is to allow the action to be re-activated 
on the next update of DUO, so that GT-CATS 
expects a correction of the MCP-selected value 
in question. 

Examples of GT-CATS operation 
This section presents examples of GT-CATS 
operation using data exerpted from the 
empirical evaluation described in the next 
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chapter. Figure 67 shows the GT-CATS inter- 
face; the buttons at the upper left of the inter- 
face enable the user to raise or lower the win- 
dows that display the state space, the limiting 
operating envelope, activity tracking output, 
and DUO. In figure 68, the DUO display win- 
dow has been brought to the foreground. The 
simulation time is displayed at the extreme 
upper left. The ATC clearance that is currently 
reflected in GT-CATS’ LOE is displayed 
below the interface controls. At the bottom left 
of the interface is a thumbnail view of the 
subphase currently active in DUO that can be 
used to adjust the portion of DUO shown in 
the large DUO window. 

The situation depicted in figures 67 and 68 is 
now examined more closely. Figure 69 shows 
the most recent GT-CATS output. Time values 
in the output window are displayed using GT- 
CATS’ internal system time (expressed in 
seconds since midnight). GT-CATS prints the 
active ATC clearance in red. Green lettering 
indicates manual pilot actions GT-CATS 
expects; black lettering indicates expectations 
for undetectable actions. 
Blue lettering denotes an explanation. In 
figure 69, GT-CATS has detected and 
explained two of the three actions it expected 
pilots to perform to comply with the recent 

clearance (i.e., dial-mcp-hdg and push-vnav- 
sw). Black lettering is used to display a notice 
that the third action (i.e., dial-mcp-alt) has not 
yet been detected. 

Figure 70 shows the state space at the time 
shown in figure 69; State variables are 
grouped into aircraft state variables, AFS state 
variables, and FMS state variables, from top to 
bottom. Figure 71 shows the limiting operat- 
ing envelope (LOE). Values at the top com- 
prise the short-term limit state; values at the 
bottom are the long-term limit states. Check 
marks indicate that a limit state has been 
passed. Table 2 shows the context specifiers 
activated according to the values expressed in 
the state space and limiting operating 
envelope. 

In addition to generating context specifiers at 
time 351 13, GT-CATS’ action manager also 
generates an explanation for the push-vnav-sw 
action detected at that time. Table 3 shows 
output printed in the Lisp environment indi- 
cating that the action manager has explained 
the action. Other output shown in table 3 
shows the action manager event to check that 
all the expectations have been met. 
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Figure 67. GT-CATS interface. 

86 



Figure 68. GT-CATS interface with DUO window exposed. 
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TIME 55080-- TUfW LEFT HEADING 290-- CLIME TO 10000 FEET 
TIME 35+81:)-- CT-IZ&T.S' EXPEIZTZ ACT IrJt.4 F'USH-'I.I'~.IA\J'-!ZL.J 
T I  ME 35(>80-- lI;T-tl&TS EXPECTS AIZT ION 11 1 AL-M[:P-ALT 

T 1 t.lE 35(j8+-- CiT-iZATS EXPECTS ACT 1 I]N 11 I AL-MIZP-HDI; 
TIME 35080-- CT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC 

TIME 3505%- GT-CATS EXPLAINS ACTION 6070--DIAL-MCP-HDG-- AS 
SUPPORTING SUBTASK 5073-SET-MCP-HDG- WHICH SUPPORTS TASK 
4046--MON-ADJ-HDG-SEL-TURN 
TIME 55115-- GT-CATS EXPLAINS ACTION 6093--PUSH-VNAV-SW-- AS 

4060--SETUP-ENG-VNAV 
TIME 35113-- GT-CATS DID NOT DETECT ACTION 6092-- DIAL-MCP-ALT-- 
AFTER 30 SECS 

3 SUPPORT I NG SUET ASK 5103--EHG-VNAV-- WHICH SIJPFORTS TASK 

Figure 69. Enlarged view of GT-CATS output. 

TIME = 351 13 
LAT = 33.75 LONG = -84.37 
HDG = 345,23 
AGL-ALT = 4994.48 MSL-ALT = 5000,50 

SPD = 249.59 VS = 3.01 
ROLL-ENGD = hdg-sel ROLL-ARMED = N I L  

PITCH-ENGD = a1 t - ho ld  PITCH-ARMED = N I L  
CMD-MODE = cmd QUTO-THR-ENGD = spd 

MCP-HDG = 345.00 MCP-ALT = 5000.00 
MCP-SPD = 249.59 MCP-US = 3258.00 

Td-PASSED = 0 ToD-PASSED = 0 
VNAV-TGT-ALT = 18000,OO VNAV-TGT-SPD = 210.00 
VNAV-SPD-INT = 0 VNAV-EVENT-DIST = 169566,53 
VNAV-CAPTURE = 1 DESC-NOW-ACTIVE = 0 
ON-TRACK = 0 ACTIVE-WPT = 4 
NEXT-WPT = 5 PAST-LRST-WPT = 0 

Figure 70. Enlarged view of GT-CATS' state space window. 

CLEARED-HDG = 290 CLEARED-ALT = 10000 
CLEARED-SPD = 250 CLEARED-VS = N I L  

PRSSED 

J AIRPORT KATL 08L 33.64.-84.43 
RWY-HDG = 92.0 RWY-ELEV = 1026.0 

4 WPT WETWO 33.73,-85.12 

5 WPT TDG 33.58,-86.04 

AIRPORT KBHM 5 33.56, -86.75 
RWY-HDG = 56.0 RWY-ELEV = 644.0 

climb 210/4026 J 
climb 250/10000 

descent 250/10000 

descent 170/2600 

Figure 71. Limiting Operating Envelope contents. 
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Table 2. Context specifers at time 35113. 

CONTROLLED-SYSTEM time is 35113 
Context Specifiers at time 35113: 

(ACRFT-STATE VS WITHIN-LIMITS) 
(ACRFT-STATE SPD WITHIN-LIMITS) 
(ACRFT-STATE ABS-ALT AT-OR-ABOVE-3000) 
(ACRFT-STATE ALT MORE-THAN-2OOO-FROM-TGT) 
( ACRFT-STATE ALT BELOW-LIMITS ) 
(ACRFT-STATE ALT OUTSIDE-LIMITS) 
(ACRFT-STATE HM; OUTSIDE-LIMITS) 
(AFS-STATE TSP CLB) 
(AFS-STATE MCP-HDG OUTSIDE-LIMITS) 
(AFS-STATE MCP-ALT OUTSIDE-LIMITS) 
(AFS-STATE MCP-SPD WITHIN-LIMITS) 
(AFS-STATE CMD-MODE NOT-FD) 
(AFS-STATE CMD-MODE CMD) 
(AFS-STATE ATHR-ENGD NOT-IDLE) 
(AFS-STATE ATHR-ENGD SPD) 
(AFS-STATE ATHR-ENGD NOT-FL-CH) 
(AFS-STATE ATHR-ENGD NOT-THR-HOLD) 
(AFS-STATE ATHR-ENGD NOT-N1) 
(AFS-STATE PITCH-ARMED NOT-VNAV) 
(AFS-STATE PITCH-ENGD NOT-VNAV-PATH) 
(AFS-STATE PITCH-ENGD NOT-ALT-CAP-RQD-ALT) 
(AFS-STATE PITCH-ENGD NOT-ALT-CAP) 
(AFS-STATE PITCH-ENGD NOT-SPD) 
(AFS-STATE PITCH-ENGD NOT-VNAV-SPD) . 

(AFS-STATE PITCH-ENGD NOT-VNAV) 
(AFS-STATE PITCH-ENGD NOT-VS) 
(AFS-STATE PITCH-ENGD ALT-HOLD) 
(AFS-STATE ROLL-ARMED NOT-TO) 
(AF'S-STATE ROLL-ARMED NOT-LNAV) 
(AFS-STATE ROLL-ENGD NOT-TO) 
(AFS-STATE ROLL-ENGD NOT-HDG-HOLD) 
(AFS-STATE ROLL-ENGD NOT-LNAV) 
(AFS-STATE ROLL-ENGD HE-SEL) 
(FMS-STATE VNAV-SPD-INT OFF) 
(FMS-STATE TGT-SPD OUTSIDE-LIMITS) 
(FMS-STATE VERT-PROFILE PROGFMD) 
(FMS-STATE LAT-PROFILE-INTCPT NOT-PROGRMD) 
(FMS-STATE LAT-PROFILE NOT-PROGRMD) 
(E'MS-STATE VERT-PROFILE-INTCPT NOT-PROGRMD) 
(CURRENT-PHASE CLIMB IN-PROGRESS) 

Changing node statuses ...... Done 
Highlighting ...... Done 
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Table 3. Action manager output at time 351 13. 

,,, ... Processing detected action: (VNAV N I L )  
************** explaining an action *************** 
GT-CATS explains action 6093, push-vnav-sw, 
as supporting subtask 5103, eng-vnav, 
which supports task 4060, setup-eng-vnav 

(6092 6059) 
action 6093, push-vnav-sw not on waiting list 
(6092 6059) 
action 6092, dial-mcp-alt, not detected after 30 secs 
(6092 6059) 
action 6070, dial-mcp-hdg not on waiting list 
@ 

Jsetup-vert-profile I 

I 
Figure 72. Closeup of DUO explaining push-vnav-sw. 

T 1 ME 35151-- C L  I t.iB TO CRU I SE ALT I TIJDE FLISO-- TURN LEFT HEADING 
2'45 PR:OI:EEII l3t.I i:i]l-IRSE 

TIME 35151-- GT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC 

TIME 3516O-- GT-CATS EXPLAINS ACTION 6070--DIAL-MCP-HDG-- AS 

4046--MON-ADJ-HDG-SEL-TlJRN 
TIME 35194-- GT-CATS DETECTS INACTIVE PUSH-VNAV-SW ACTIONS-- 
(6090 6093 6107 6112 6118 6121 6130) 

TIME 35194-- GT-CATS DID NOT DETECT ACTION 6094-- DIAL-MCP-ALT-- 
AFTER 30 SECS 
TIME 35179-- GT-CATS EXPLAINS ACTION 6094--DIAL-MCP-ALT-- AS 
SUPPOETIbIC SUETASK 5I05--ADJ-MCF-kLT-- WHICH SUPFORTS TllSK 
4061-MON-AD J-VNAV-SPD-CL I ME 

TIME 35199-- GT-CATS EXPLAINS fiCTION ~O~~--PUSH-LNAD-SW-- AS 

4047--ARM-LNA1d 
TIME 35206-- GT-CATS EXPECTS ACTION MON-LNAV-ARMED-ADI-ANNC 

MODE-SELECT I ON 3022-- VNAV-SPD-CL I tlE 

T I  ME 35151-- IST-I::ATS ExPEIlTS AilTICiN 11 I&L-t.lCP-ALT 

T 1b.fE 35.151-- GT-CATS E><PEI:TS fiizT 1014 11 I AL-MCP-HDI; 

w SLIPPORTING SUETASK 5073--SET-MCP-HDG-- WHICH SUPPORTS TASK 

7 - 
T 1 351'3'3-- I:T-C:ATS EXPEIZTS QIZT I I2f.j Fi~SH-Lt.Ifi'Ir'-SlJ 

':;; SUPPORT1 NC SUETASK 5075--ARM-LNAV-- b4H I CH SUPPORTS TASK -. . 

TIME 352.18-- ACT1 O1.l tJ093-- PlJSH-\.!NA\)-S1d-- REVISED TO SUPPORT 

Figure 73. Sample output at time 35218. 
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In the DUO window, the detected push-vnav- 
sw action is color-coded purple, indicating it 
has been successfully explained. Figure 72 
shows a close-up view of this portion of the 
DUO window. The green color-coding in 
figure 72 shows that GT-CATS is still 
expecting the dial-mcp-alt action. 
Figure 73 shows some additional output later 
in the same data set shown earlier. GT-CATS 
first expected the dial-mcp-alt and dial-mcp- 
hdg actions to meet the new clearance (climb 
to cruise altitude FL180-turn left heading 
245 and proceed on course). Because applica- 
ble modes for accomplishing this are already 
engaged (i.e., VNAV and HDG SEL; figure 
74), the pilot need only set the new target 
values for heading and altitude. In this exam- 
ple, the pilot not only sets the new required 
target values, but also presses the VNAV 
engagement switch (see figure 73). The push- 

TIME = 35218 

vnav-sw was not expected because VNAV was 
already engaged. GT-CATS later revises an 
explanation the for this unnecessary action, as 
described below. 
Before GT-CATS applies the revision process 
to the push-vnav-sw action, the aircraft turns 
onto the required heading, and can intercept 
the programmed LNAV route as directed in 
the clearance. At this time, GT-CATS expects 
the pilot to arm LNAV by pushing the LNAV 
mode MCP switch (see figure 73). The pilot 
does perform the push-lnav-sw action, and 
GT-CATS explains it accordingly. 
By this time, GT-CATS is ready to apply the 
revision process to the unexpected push-vnav- 
sw action. The revision process finds that the 
action can support the use of VNAV mode, so 
it explains the action accordingly. The output 
from GT-CATS’ action manager is shown in 
table 4 and figure 75. 

LAT = 33.79 LONG = -84.52 
HDG = 245.23 
AGL-ALT = 10003.49 MSL-ALT = 10009.49 

SPD = 253.16 US = 3410.56 
ROLL-ENGD = hdg-sel ROLL-ARMED = l n a v  

PITCH-ENGD = vnav-spd PITCH-ARMED = NIL 
CMD-MODE = cmd QUTO-THR-ENGD = spd 
MCP-HDG = 245.00 MCP-ALT = 18000.00 
MCP-SPD = 251.66 MCP-US = 4000.00 

ToC-PFISSED = 0 ToD-PASSED = 0 
VNAV-TGT-ALT = 18000.00 VNAV-TGT-SPD = 250.00 
VNAV-SPD-INT = 0 VNAV-EVENT-DIST = 121979.22 
VNAV-CAPTURE = 1 DESC-NOW-ACTIVE = 0 
ON-TRACK = 0 ACTIVE-WPT = 4 
NEXT-WPT = 5 PAST-LAST-WPT = 0 

Figure 74. State space at time 35218. 

Table 4. Action manager output showing successful revision of push-vnav-sw. 

***** attempting to revise actions (6090 6093 6107 6112 6118 6121 6130) ***** 
revising action 6093 
action 6093, push-vnav-sw, revised to support mode-selection 3022, vnav-spd-climb 
***** revision complete! ***** 
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setup-vert-profile 
dial-mcp-alt 1 

I ,  green 1 
1 blue (revised) I ad.i -mcP-a 1 t Hdial-mcp-alt I 

Figure 75. Closeup of DUO showing successful revision of push-vnav-sw action. 

Figure 76.  GT-CATS output window at time 35908. 
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Data from later in the same flight exemplifies 
other important features of the GT-CATS 
activity tracking process. The output from this 
segment, showing the responses to two clear- 
ances, is shown in figure 76. In response to the 
first clearance, GT-CATS expects push-vnav- 
sw and dial-mcp-alt. GT-CATS detects and 
explains the push-vnav-sw action; it also 
detects and explains the dial-mcp-alt action, 
but notes that the altitude set does not match 
the cleared altitude. GT-CATS therefore 
expects an adjustment to the set altitude. The 
pilot performs the action, and GT-CATS again 
explains it. 
The second clearance shown in figure 76 * 

requires changes in heading, altitude, and 
airspeed. GT-CATS expects that the pilot will 
continue to use VNAV mode, and that the 
Speed Intervention submode will be used to 
adjust the speed (i.e., GT-CATS expects push- 
spd-sel-sw). GT-CATS also expects a transition 
to HDG SEL, and a set heading of 235. 
As figure 76 shows, the pilot does engage HDG 
SEL and enter the new heading; GT-CATS 
explains these actions accordingly. The pilot 
also enters the required altitude, and GT-CATS 
explains the dial-mcp-alt action as supporting 
the continued use of VNAV mode. The pilot, 
however, transitions to FL CH by pressing the 
FL CH mode engagement switch. In this case, 

the dial-mcp-alt action actually supports the 
use of FL CH. (In the evaluation described in 
Chapters VI and VII, GT-CATS’ explanation 
is logged as incorrect, even though the action 
could have supported the continued use of 
VNAV mode.) 
In support of FL CH mode, the pilot performs 
the dial-mcp-ias action. Because GT-CATS did 
not expect the pilot to transition to FL CH 
mode, the dial-mcp-ias action is also unex- 
pected. Figure 77 shows how GT-CATS 
indicates unexpected actions in yellow. Note 
that the dial-mcp-ias speed-adjustment action 
also supports the init-spd-intervtn task; GT- 
CATS’ revision process is charged with 
disambiguating which instance of the dial-mcp- 
ias action can best explain the action. Also, 
GT-CATS flags the push-spd-sel switch as late 
because it has not been detected. 
The last portion of this example shows what 
happens when GT-CATS attempts to revise the 
unexpected dial-mcp-ias and push-fl-ch-sw 
actions. As shown in figure 78, GT-CATS suc- 
cessfully revises these actions to support the 
use of FL CH to perform the descent. Table 5 
shows the action manager output in the Lisp 
environment, also indicating that the actions 
are successfully explained by the revision 
process. 
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set-mcp-alt -dial-mcp-alt I 
enz-f 1 -ch -7 P ush-fl-ch-std 1 

i Jmon-fl-ch-desc-profile 
ad.i -mcp-a It Hdia l -mcp-a l t  1 
adj-mcp-ias -7 dia l -nmias  I 
mon-fl-ch-enzd Hmon-fl-ch-adi-annc I 

llpush-vnav-sw 1 arm-vnav 
larm-vnav 

mon-vnav-a=- mon-vnav-armed-adi-ann4 

Jsetup-vert-profile I 
set-mcp-alt -dial-mcp-alt setup-ene-vnav I 
enz-vnav Mush-vnav-sw 1 

/ I  init-early-descent )--I enn-desc-now 1 

. I purple EI green1 I yellow mon-vnav-spd-Profile I 
Hdia l -mcp-a l t  1 

L fion-ad.i -vnav-spd-desc 
mon-vnav-spd-adi-annc I mon-vnav-spd=y 

Figure 77. Closeup of GT-CATS' DUO window, showing unexpected actions highlighted in yellow. 

c_ - B  

L. 

SLOW 

AS 

_ _  ~ 

4193--SET<lP-ENG-HDG-SEL 
TIME 35890-- GT-CATS EXPLAINS ACTION 6345--DIAL-MCF-ALT-- AS 
SUPPORTING SUETQSK 5416--ADJ-MCP-ALT-- WHICH SUPPORTS TASK 
4210--MOH-ADJ-VNA'-~ATH-DESC 
TIME 35907-- GT-CATS DETECTS INACTIVE PUSH-FL-CH-SW ACTIONS-- 
( 6337 > . 

TIME 35907-- GT-CATS DID NOT DETECT ACTION 6349-- 
PUSH-SPD-SEL-SW-- AFTER 30 SECS 
TIME 35908-- GT-CATS DETECTS INACTIVE DIAL-MCP-IAS CICTIONS-- 
(6339 6350 6359 6364 6370 6377 6382) 

TIME 35931-- GT-CATS EXPECTS ACTION MON-FL-CH-ADI-ANNC 
TIME 35931-- GT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC 

'- TIME 35931-- QCTION 6337-- PUSH-FL-CH-SW-- REVISED TO SIUPPORT 
MODE-SELECTION 3065-- FL-CH-DESCENT 
TIME 35931-- ACTIOtl 63?9-- DIAL-MCP-IPS-- REVISED TO SIJPFORT 
MODE-SELECTION 3065-  FL-CH-DESCENT - _  

Figure 78. GT-CATS output showing successful application of the revision process to explain the 
push-fl-ch-sw and dial-mcp-ias actions. 
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Table 5. Action manager output from the revision process. 

***** attempting to revise actions (6337) ***** 
revising action 6337 
action 6337, push-fl-ch-sw, revised to support mode-selection 3065, fl-ch-descent 
***** revision complete! ***** 
***** attempting to revise actions (6339 6350 6359 6364 6370 6377 6382) ***** 
revising action 6339 
action 6339, dial-mcp-ias, revised to support mode-selection 3065, fl-ch-descent 
***** revision complete! ***** 

Summary 
This chapter described an implementation of 
GT-CATS to track the activities of pilots using 
modes of automation to navigate. It first pre- 
sented the OFM-ACM developed for the 
B757/767. It then described the state space and 
limiting operating envelope, and DUO-an 
instantiation of the OFM-ACM that is anno- 
tated in real time to track pilot activities. The 
chapter next showed how the state space and 
limiting operating envelope are used to acti- 
vate context specifiers that enable GT-CATS to 
predict pilot mode usage activities. Pilot 
actions detected by GT-CATS are processed 
by the action manager. 

The action manager explains expected actions 
based on its expectations. Unexpected actions 
are either explained by the revision process as 
supporting an alternative mode selection 
applicable in the current situation, or identi- 
fied as possible errors. Expectations not met 
by pilot actions are also flagged. Finally, the 
chapter presents examples of GT-CATS 
operation exerpted from empirical evaluation 
data. The next chapter describes the evalua- 
tion procedure and experimental materials. 

95 



6. Empirical Evaluation 

Introduction 
GT-CATS was implemented to demonstrate 
and evaluate the effectiveness of the GT-CATS 
methodology for explaining how 757/767 
pilots use complex flight deck automation for 
navigation. This chapter first gives some back- 
ground on the evaluation methods used by 
other researchers to evaluate intent inferencing 
and aiding systems. It then describes the GT- 
CATS evaluation study, its aims, methods and 
expected results. 

Background 
Before presenting the GT-CATS validation 
plan, some background on evaluations per- 
formed on other knowledge-based systems is 
provided. By and large, such systems are 
evaluated in an ad hoc fashion. Often a sys- 
tem is termed “valid” merely because the 
overall performance of the system is in some 
sense “similar” to that of a domain expert. 
Jones, Mitchell, and Rubin (ref. 90) found this 
to be a prevalent approach. In their review of 
validation methods, they begin by rejecting 
Schank and Abelson’s (ref. 47) assertion that 
merely implementing a theory on a computer 
validates it as effectively characterizing the 
process it is modeling. They refute the claims 
of expert systems designers who believe that 
because their system solves a given problem in 
a way similar to that of a human expert, the 
system represents a valid methodology for 
solving such problems in the given domain. 

In systems that attempt to infer the intentions 
of a human operator, researchers have used the 
results of studies on the aiding component as 
an implicit measure of the validity of the 
understanding component. For example, Funk 
and Lind (ref. 91) find their Agent-Based 
Pilot-Vehicle Interface effective because pilots 
were able to perform better with it than with a 
conventional interface. They also use expert 
opinion to bolster support for their 
methodology. 

OPAL, the intent inferencing system used to 
understand pilot’s intentions in the Pilot’s 
Associate project, was initially validated in the 
context of a small process control system (ref. 
29). Experimental subjects controlling the 
system were probed, during the course of the 
interaction, with messages describing plans and 
goals from the set of plans and goals inferred 
by OPAL,. Each probe required a yes or no 
response from the subject. Using a design that 
also included random probes, the principal 
hypothesis fokulated for the validation 
experiment was that subjects would produce a 
reliably greater proportion of yes responses to 
the OPAL-generated probes than that for the 
random probes. Experimental data confirmed 
this hypothesis. The validation procedure 
included several additional analyses to exam- 
ine subject effects, learning effects due to the 
unfamiliar probes used, and configuration 
effects of the experimental testbed. 
Jones et al. (ref. 90) develop a rigorous meth- 
odology for statistically evaluating the per- 
formance of ACTIN, the understanding com- 
ponent of OFMspert. Their approach to 
evaluation uses ACTIN’S approach to under- 
standing intentions as the basis for judging its 
validity. ACTIN is said to understand operator 
actions when it infers support for the same 
functions, subfunctions, and tasks that a 
human does. They clarify that the “human” 
referred to here may be a domain expert per- 
forming a post hoc analysis, or the operator 
verbalizing his or her intentions concurrently 
with actions. Jones et al. therefore use a two- 
stage approach to validating their system. In 
the first stage, each operator action was 
analyzed by a domain expert and compared 
with ACTIN’S interpretation of the same data. 
In the second stage, concurrent verbal proto- 
cols collected from experimental subjects were 
compared to the interpretations offered by 
ACTIN. By using this two-stage process, 
problems with expert comparisons (refs. 92 
and 93) and potential deficiencies with verbal 
protocol analysis (ref. 94) are not, by them- 
selves, allowed to sway the analysis. 
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Evaluation of GT-CATS 
The GT-CATS evaluation study sought to 
assess the effectiveness of GT-CATS’ activity 
tracking method in the context of a real-time 
simulation of the Boeing 757/767 autoflight 
system. Ten type-rated pilots from a major air 
carrier served as subjects for the study. The 
study was preceded by a pilot study, which 
used five type-rated pilots familiar with the 
goals of the GT-CATS evaluation, to ensure 
realism and feasibility of the materials and 
procedures employed in the formal evaluation. 
The GT-CATS evaluation, like the ACTIN 
evaluation, uses GT-CATS’ approach to 
tracking operator activities as the basis for 
judging its validity. GT-CATS predicts and 
explains actions correctly when it identifies the 
task and mode selection that the action sup- 
ports. However, the experimental context of 
mode usage in the glass cockpit affords the 
unique opportunity to verify that a pilot action 
supports a task associated with a hypothesized 
mode selection by examining the state of the 
automation: a pilot action is known to support 
a valid mode selection if the control automa- 
tion is engaged in that mode. Thus, the mode 
structure of the automation defines correct and 
incorrect actions, and minimizes reliance on 
expert assessments and verbal protocols. 

The GT-CATS activity tracking process gives 
rise to two sets of possible outcomes from 
which performance measures are derived. One 
set of outcomes results when an action is 
expected, the other when an actual operator 
action is detected. These outcomes, described 
in detail later in this chapter, serve as the basis 
for evaluating GT-CATS’ performance, rather 
than the indirect measures of improved opera- 
tor performance with an aiding system that 
uses the output of an intent inferencer, or the 
operator’s perceived usefulness of the aid. 
Furthermore, expert assessment of GT-CATS’ 
activity tracking outcomes is ancillary, 
because examination of the state of the auto- 
mation reveals whether GT-CATS’ expecta- 
tions and explanations are valid. 

GT-EFIRT 
The evaluation was performed using a Boeing 
7571767 part-task simulator, called the Georgia 
Tech EIectronic Flight Instrument Research 
Testbed (GT-EFIRT). GT-EFIRT was devel- 
oped as an experimental tool for examining 
pilot interactions with complex flight deck 
automation, and for studying advanced inter- 
faces (ref. 95). GT-EFIRT includes the com- 
ponents of the Boeing 757/767 flight deck 
automation and displays that are important for 
aircraft maneuvering and navigation. Based on 
the configuration and inputs supplied by the 
user, GT-EFIRT’s flight model accurately 
describes the resulting real-time behavior of 
the aircraft. All the components in GT-EFIRT 
were developed with the full capabilities found 
on the actual aircraft, with the exception of the 
FMS Control and Display Unit (CDU). 
GT-EFIRT’s CDU has fully functional display 
capabilities, but the input processing required 
for the more complex funct: ions was not 
developed. Nonetheless, once programmed, 
GT-EFIRT’s Fh4S acts as the source of 
information used by the LNAV (Lateral 
Navigation) and VNAV (Vertical Navigation) 
autoflight modes, as in the real aircraft. 
Programmed waypoints are tracked in LNAV 
mode. Crossing restrictions at waypoints and 
speed/altitude restrictions are adhered to in 
VNAV under realistic conditions. If, for 
example, the information required to use 
VNAV mode to accomplish a particular flight 
goal is displayed on the appropriate page of 
the CDU, VNAV mode can be expected to 
perform reaIistically. 

. 

- 

The GT-EFIRT display configuration used in 
the GT-CATS evaluation study is shown in 
Figure 79. GT-EFIRT runs on a Sun 
SparcStation loTM computer with three 
monitors. The left monitor contains reproduc- 
tions of the primary flight instruments of the 
757/767. These are the Attitude Director 
Indicator (ADI), altimeter, airspeed/mach 
indicator, and vertical speed indicator. The 
center monitor has the Mode Control Panel 
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(MCP), Horizontal Situation Indicator (HSI), 
HSI range selector, and the FMC CDU. On the 
right monitor are additional controls for flaps, 
gear, engine thrust settings, etc. Controls for 
the simulation are also included on the right 
monitor, including controls to select the flight 
scenario to be flown, and a window to display 
the current ATC clearance. 

GT-EFIRT uses a mouse for operator control 
inputs. Controls with mouse inputs are located 
on the center and right monitors. MCP 
windows for setting altitude, airspeed, heading, 
and vertical speed have virtual knobs that use 
mouse “hot spots” to simulate turning the 
knob in a particular direction. Individual 
mouse clicks increment the set value; holding 
down the mouse button enables a large change 
in the set value. This control mechanism may 
require the operator to deliberately overshoot 
the set value, then correct it with an appropri- 
ate number of mouse clicks in the opposite 
direction. All other MCP switches operate in a 
conventional manner: clicking the mouse 
presses the button. 
Overall, GT-EFIRT handles the majority of 
pilot inputs required to effectively use the 
automation found on the 7571767. The fidelity 
and realism of GT-EFIRT were exhaustively 

I om I 

reviewed in the pilot-study phase of the GT- 
CATS evaluation. Early tests identified prob- 
lems with displays and flight behavior in vari- 
ous modes. These problems were then 
corrected, and GT-EFIRT was reviewed by 
other pilots in the course of later tests. These 
subjects assessed the realism of GT-EFIRT as 
adequate for exploring mode mangagement 
behavior. 

Subjects 
Ten Boeing 757/767 type-rated line pilots 
from a major carrier volunteered to participate 
in the study. Each pilot was asked a short 
series of questions at the outset of the experi- 
mental session. The results of this survey are 
tabulated in table 6. Two pilots were captains, 
eight were first officers. The mean number of 
years of reported experience on the 7571767 
was 3.2 years (minimum one year; maximum 
five years). All but one had flown the 7571767 
recently. All but two had extensive experience 
using a mouse as a computer input device 
(several owned computers). 
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Table 6.  Results of initial subject survey. 

Subject 
Number 

1 
2 

3 
4 

5 
6 
7 
8 
9 
1 0  

- 
Seat 

- 
2 
2 

2 
1 

2 
1 
2 
2 
2 
2 - 

7571767 
Experience 

(years) 
1 .o 
1.5 

4.0 
4.5 

3.0 
5.0 
3.5 
3.5 
4.0 
2.0 

Transitioned 
From 

73 7 
737 

727 
727 

MD-88 
737 
727 
727 
737 

MD-88 

Experimental procedure 
Each subject “flew” five experimental 
scenarios designed to elicit a range of 
autoflight system mode usage. Each subject 
participated in a single experimental session 
lasting approximately four and one half hours, 
during which they flew all five scenarios. After 
the initial survey, each subject was instructed in 
the operation of GT-EFIRT. As part of the 
orientation, the experimenter explained the 
features of GT-EFIRT and led the subjects 
through a real-time training scenario. The 
training scenario enabled subject pilots to fly 
GT-EFIRT in the same manner as they would 
the five experimental scenarios. The experi- 
menter answered any questions regarding the 
operation of the GT-EFIRT interface, or the 
performance characteristics of GT-EFIRT’ s 
autoflight modes, during the orientation phase. 

Following the orientation, subjects flew each 
experimental scenario with GT-CATS tracking 
their activities in real-time. Each scenario was 
recorded on audiohide0 tape; pilots were 
asked to verbalize their activities to the extent 
necessary to indicate why they performed a 
particular activity in cases where it was not 
obvious. After the subjects completed the five 

Time Since 
Flown Type 

(days) 
2 

500 

7 
0 

1 
1 
2 

4 5  
3 
3 

Computer 
mouse 

experience 
some 

Yes 

limited 

Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
yes 

Notes 

now L lOl l  
FIE 

had just 
come from 
flying 

scenarios, a post-questionnaire was adminis- 
tered to assess the perceived realism of the 
scenarios and GT-EFIRT performance. 

Experimental scenarios 
The GT-CATS evaluation required a set of 
experimental scenarios. The scenarios are 
designed to elicit a range of mode usage, in 
order to provide insight into the ways in which 
pilots use the available automation to navigate 
the aircraft. Each scenario is defined by a pre- 
flight plan that is preprogrammed into GT- 
EFIRT’s FMS before the flight, and a set of 
ATC clearances to be issued during the course 
of flight. Each scenario begins with a clear- 
ance issued while on the ground, proceeds 
through takeoff, climb, cruise, and descent, 
and ends when the final approach clearance is 
issued. Each clearance in a scenario is trig- 
gered, in order, as the aircraft reaches a 
particular point in the flight. 

The clearances are designed to require the 
subject pilots to make full use of the available 
automation. ATC clearances are worded in a 
standard manner that clearly identifies the 
flight path required for compliance. Both ver- 
tical and lateral clearances utilize a common 
set of verbs, modifiers, and state variable values 
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to represent the required flight path (ref. 96). 
Simple clearances specify modification to a 
single aspect of the flight path, while complex 
clearances may dictate changes in several 
aspects of the flight path. The clearances used 
in the experimental scenarios combine a subset 
of the clearances identified by Wagner and 
Curry. Clearances that require CDU manipula- 
tions for compliance are not used. To ensure 
that the clearances used in the scenarios reflect 
real-world ATC interventions, the scenarios 
were exhaustively reviewed by pilots from a 
major carrier, and by the pilots who partici- 
pated in the GT-CATS pilot study. 

The selection of the origin and destination 
airports for each scenario, and the flight path 
prescribed by the clearances, was driven by 
several factors. One factor concerned a 
requirement of the GT-EFIRT simulator to 
have terrain maps of the origin and destination 
airports, in order to provide realistic radio 
altimeter readings on the ADI, and to support 
interface studies (ref. 96). Airports with 
worthy terrain representations were therefore 
used to construct the scenarios used in the GT- 
CATS evaluation. A second factor that 
impacted the choice of origin and destination 
airports was the length of the scenarios. It was 
necessary to create scenarios that could all be 
flown in a reasonable amount of time. 
Although the scenarios are designed to “fast- 
forward” through the period of inactivity in 
the middle of the cruise phase of flight, a short 
flight has a lower cruise altitude than a long 
flight, which in turn yields shorter climb and 
descent phases. A third factor that affected the 
choice of scenarios was the importance of 
including crossing restrictions, in order to 
elicit a range of mode manipulations. Crossing 
restrictions are commonly found in published 
Standard Instrument Departures (SIDs) and 
Standard Arrival Routes (STARs). The GT- 
CATS scenarios therefore incorporate SIDs 
and STARs commonly used for the selected 

airports. Actual traffic conditions were 
exaggerated in light traffic areas (such as 
Birmingham), in order to create a need for 
ATC interventions. 

The following subsections describe the five 
scenarios developed for evaluating GT-CATS. 
Each scenario is tabulated to show the condi- 
tions that trigger a particular clearance, the 
clearance itself, and the expected mode(s) the 
pilot will employ to comply with clearance. 
Expected modes are based on the conditions 
for expecting a given mode selection in the 
OFM-ACM, except in cases noted with an 
asterisk. Where an asterisk appears, the OFM- 
ACM is conditioned such that a higher level of 
automation is expected (e.g., FL CH* indicates 
that VNAV mode is expected according to the 
OFM-ACM because the programmed vertical 
profile is appropriate for complying with the 
clearance, but there is a strong likelihood of 
pilots using FL CH due to the low altitude and 
expected future clearances; FL CH alone indi- 
cates that FL CH is the expected mode). Thus, 
an asterisk indicates cases where GT-CATS is 
likely to apply the revision process. Each 
scenario is also depicted graphically to show 
the flight path prescribed by the scenario 
clearances. 

Scenario I: KATGKBHM 
Scenario 1 is a flight from Atlanta (KATL) to 
Birmingham (KBHM). It is tabulated in table 7 
and depicted graphically in figure 80. In this 
scenario pilots GT-CATS expects pilots to use 
high-level automation (Le., LNAVNNAV 
modes) until the final stages of descent. Dur- 
ing climb, however, it is likely that pilots will 
choose a lower level of automation that GT- 
CATS must use the revision process to explain. 
The sixth clearance in the scenario is designed 
to elicit use of the VNAV speed intervention 
submode. 
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8 
slow to 240 knots 0 lor traffic spacing 

0 resume ncfmal 

climb to 1Ww feet-. 
maintain runway heading 

0 @ speed 
expedite descent to 

turn ripht @ 
heading 215 

and proceed on course 
dexend to 3500 feet- 
'low Io 0 knots turn left headtnp 0 235.- slow lo - 

200 knots 

0 

Figure 80. Scenario 1: KATL-KBHM. 

Table 7. Scenario 1: KATL-KBHM. 
, 

- slow to 230 knots crossing 

descend to 3500 feet-- slow to 

102 



in that the descent is interrupted by clearance 
Scenario 2: KA TL-KBHMl 
Scenario 2 is also a flight from Atlanta 
(KATL) to Birmingham (KBHM). It is tabu- 
lated in table 8 and depicted graphically in 
figure 81. Scenario 2 prescribes a different 
route, but differs from scenario 1 principally 

to “stop descent for crossing traffic,” and the 
aircraft must leave the LNAV route as dictated 
by clearance 6. Again the climb phase presents 
several situations where GT-CATS may apply 
the revision process, if pilots choose against 
VNAV mode. 

0 
climb to CNISB attihide 

245 and proceed on course 

(3 
fast lorwarding to 
15 miles belore top ’ FLtW- turn len heading 
of dexent 0 \ on *ne 

turn len heading 
290 and proceed 

turn  en headtng 290 @ 

0 
turn len heading 235.- 
descend to 4000 feet- 
slow to 210 kmts 

ng 310 

I 

0 
climb to 5000 leet-- 
msnlin N I W ~  heabng 

QJ 
turn right heading 

knots 
slow to 250 knom 
crosslng too00 feet 

3 325.- slow to 180 

turn right head1 

I lor tranic spac.... 
A 

descend to 3 ~ 0  @ leet- slow M 200 

stop W e n t  at 
5000 feet for 
crossing tratlic 

knots 

0 

Figure 8 1. Scenario 2: KATL-KBHM 1. 
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Table 8. Scenario 2: KATL-KBHM1. 
~ 

Trigger 
on ground 

altitude above 2200 feet 
altitude above 3550 feet 
altitude above 4050 feet and 
heading past 344 
heading past 292 

-~ ~ 

Clearance 
1 ,  climb to 5000 feet-- maintain 

runway heading 
2. turn left heading 005 
3. turn left heading 345 
4. turn left heading 290-- climb 

to 10000 feet 
5. climb to cruise altitude 

FLl80-- turn left heading 245 
and proceed on course 
turn right heading 3 I O  for 
traffic spacing 
turn left heading 250 and 
proceed on course 
fast forwarding to 15 miles 
before top of descent 
descend to 8000 feet-- slow to 
250 knots crossing 10000 

6 .  

7. 

8 .  

9. 

Expected Mode Usage 
TO, HDG HOLD, TO 

FL CH*, HDG SEL, SPD 
FL CH*, HDG SEL, SPD 
FL CH*, HDG SEL, SPD 

VNAV SPD, HDG SEL, SPD 

~~ 

altitude above 12000 feet 

heading past 309 

top of climb passed and on LNAV 
track 
less than 7000 feet to top of 
descent 

1"- 
HDG SEL, VNAV SPD 

HDG SEL, VNAV SPD 

LNAV, VNAV PTH 

LNAV, VNAV PTH 

feet 
10. turn left heading 235-- to altitude below 9700 feet HDG SEL, FL CH, SPD 

4000 feet-- slow to 2 10 knots 
11. stop descent at 5000 feet for altitude below 7700 feet HDG SEL, FL CH, SPD 

dirnb to low0 1-1.- turn nohl w 

crossing traffic 
12. descend to 3000 feet- slow to 

200 knots 
13. turn right heading 325-- slow 

to 180 knots 
14. cleared for approach to 

Figure 82. Scenario 3: KCLT-KATL. 

altitude below 5100 feet HDG SEL, FL CH, SPD 

altitude below 4200 feet HDG SEL, FL CH, SPD 

altitude below 3010 feet NA 
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Table 9. Scenario 3: KCLT-KATL. 

Clearance 
1. climb and 4000 feet-- maintain 

runway heading 
2. turn right heading 215 
3. climb to 6000 feet 

4 .  climb to 10000 feet-- turn 
right heading 290 and 
proceed on course 

FL260 
turn left heading 235 for traffic 
spacing 
turn right heading 265 and 
proceed on course 
fast forwarding to 10 miles 
before top of descent 
cleared for the MACEY 1 
arrival-- cross WOMAC at 
250 knots and 13000 feet 

5. cleared to cruise altitude 

6. 

7. 

8. 

9.  

10. descend to 10000 feet 
1 1. expedite descent to 4000 feet- 

- slow to 200 knots reaching 
4000 feet 

12. turn right heading 275-- slow 
to 180 knots 

13. cleared for the approach to 
runway 26L 

~~~ 

Trigger 
on ground 

altitude above 2350 feet 
altitude above 3595 feet and speed 
above 175 knots 
speed above 210 knots 

altitude above 9250 feet 

~~ ~ 

altitude above 17500 feet 

~~~ ~ 

altitude above 20050 feet 

~~ 

altitude above 25995 and past 
SPA 
less than 7000 feet to top of 
descent 

~~ 

altitude below 13500 feet 
altitude below 10500 feet 

altitude below 4200 feet 

altitude below 4050 feet 

Scenario 3: KCLT-KA TL 
Scenario 3 is a flight from Charlotte (KCLT) 
to Atlanta (KATL). It is tabulated in table 9 
and depicted graphically in figure 82. The 
primary distinguishing features of this 
scenario are the unusually low 4000 feet 
clearance on takeoff, and the inclusion of a 
standard arrival route (STAR), as required by 
clearance 9. Pilots are expected to use VNAV 
to comply with this clearance, as the crossing 
restriction is programmed in the FMS. The 
clearance to expedite the descent, then slow 
(clearance 1 1), is somewhat unusual, albeit not 
unheard of. 

Expected Mode Usage 
TO, HDG HOLD, TO 

FL CH*, HDG SEL, SPD 
FL CH*, HDG SEL, SPD 

FL CH*, HDG SEL, SPD 

LNAV, VNAV SPD, SPD 

HDG SEL, VNAV SPD, SPD 

HDG SEL, VNAV SPD, SPD 

LNAV, VNAV PTH 

LNAV, VNAV PTH 

FL CH, LNAV, SPD 
FL CH, HDG SEL, SPD 

FL CH, HDG SEL, SPD 

N A  

Scenario 4: KCLT-KATLI 
Scenario 4 is also a flight from Charlotte 
(KCLT) to Atlanta (KATL). It is tabulated in 
table 10 and depicted graphically in figure 83. 
Scenario 4 includes a crossing restriction that 
must be adhered to at waypoint GAFFE during 
the climb phase which, like scenario 3, begins 
with a clearance to 4000 feet. GT-CATS 
expects pilots to use VNAV to meet the cross- 
ing restriction because the restriction is pro- 
grammed in the FMS. Scenario 4 also includes 
the MACEY 1 STAR, and a series of short 
descents with speed adjustments. ' 
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Table 10. Scenario 4: KCLT-KATL1. 

Clearance 
1. climb and 4000 feet-- maintain 

runway heading 
2. turn right heading 215 
3. turn right heading 280 and 

proceed on course- cross 
GAFFE at 240 knots and 
8000 feet 

4. cleared to cruise altitude 
FL260-- resume normal speed 
turn left heading 235 for traffic 
spacing 
turn right heading 255 and 
proceed on course 
fast forwarding to 10 miles 
before top of descent 
cleared for the MACEY 1 
arrival-- cross WOMAC at 
13000 feet and 250 knots 
descend to 6000 feet-- slow to 
220 knots reaching 6000 feet 

descend to 4000 feet-- slow to 
200 knots 

1 1. cleared for approach to 
runway 26L 

5. 

6. 

7. 

8. 

9. 

10. turn left heading 235- 

Trigger 
on ground 

altitude above 2350 feet 
altitude above 3595 feet and speed 
above 175 knots 

past GAFFE 

altitude above 8750 feet 

altitude above 10000 feet 

altitude above 25995 and top of 
climb passed and on LNAV track 
less than 7000 feet to top of 
descent 

altitude below 13500 

speed below 221 knots 

~~ 

altitude below 4010 feet 

TO, HDG HOLD 

HDG SEL, VNAV SPD, SPD 

~~ ~ 

LNAVrVNAV SPD, SPD 

HDG SEL, VNAV SPD, SPD 

HDG SEL, VNAV SPD, SPD 

LNAV, VNAV PTH 

LNAV, VNAV PTH 

~~ 

LNAV, FL CH, SPD 

HDG SEL, FL CH, SPD I 
N A  

0 climb lo 4000 1801- 
cleared to CNW maintain runwav headno 

,en altltude FL280- 

lasl forwarding 10 10 miles 
before top of descent 

and proceed WI CWEe 

lurn righl WadInp 280 and proceed 

knots and B O W  feel 
@m course-. cross GAFFE a1 240 

descend to 4000 feet-. \ slow to 2W knots 

cleared lor lhe @ 
ILS approach Io 
runway 26L 

0 
Figure 83. Scenario 4: KCLT-KATL1 
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Figure 84. Scenario 5 :  KLAX-KSFO. 

NASA Ames ACFS flight simulator. It does so 
to the extent that the mode manipulations 
required to comply with the ATC clearances 
used can be successfully executed on GT- 
EFIRT. 

Scenario 5: KLAX-KSFO 
Scenario 5 is a flight from Los Angeles 
(KLAX) to San Francisco (KSFO). It is tabu- 
lated in table 11 and depicted graphically in 
figure 84. This scenario was constructed spe- 
cifically to mimic a scenario studied in the 
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Table 1 1. Scenario 5 :  KLAX-KSFO. 

d to 6000 feet- slow to 
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Table 12. Scenario 6: KBHM-KATL. 

Clearance 
1. climb to 5000 feet--maintain 

runway heading-- do not 
exceed 160 knots 

2. turn left heading 010 
3. 
4. 

increase speed to 180 knots 
climb to 7000 feet-- resume 

Trigger Expected Mode Usage 

on ground TO, HDG HOLD, TO 

altitude above 1500 feet 
heading past 012 
speed above 178 knots 

FL CH*, HDG SEL, SPD 
FL CH*, HDG SEL, SPD 
FL CH*, HDG SEL, SPD 

5. turn right heading 060 altitude above 5500 feet FL CH*, HDG SEL, SPD 
6. climb to 10000 feet--turn altitude above 6500 feet FL CH*, HDG SEL, SPD 

right heading 090 and 
proceed on course 

r 

7. cleared to cruise altitude altitude above 9200 feet LNAV, VNAV SPD, SPD 

FL CH, HDG SEL, SPD 

I I I for the ILS approach to 

several speed adjustments, scenario 6 affords 
pilots the opportunity to “get a feel” for GT- 
EFIRT’s response to such inputs. Climb rates 
in various modes, acceleratioddeceleration 
rates, and capture profiles for GT-EFIRT are 
all readily ascertainable during this scenario. 

Scenario 6: KBHM-KA TL 
Scenario 6 is the orientation scenario that each 
pilot flies prior to the five experimental 
scenarios. This scenario includes multiple 
clearances designed to demonstrate GT- 
EFIRT’s flight characteristics. By eliciting a 
range of mode selections, and requiring 
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GT-CATS ATC facility 
Because the experimental scenarios depend on 
the successful execution of each clearance in 
order to arrive at the condition required to 
trigger the next, an ATC facility was devel- 
oped. The ATC facility acts as a stop-gap 
measure to ensure that pilot errors or timing of 
mode selections do not stymie data collection 
during a scenario. In the event that a pilot errs 
in complying with a scenario clearance, or 
times compliance such that a triggering event 
is missed, the ATC facility is used to issue a 
clearance that redirects the pilot into a position 
such that downpath clearances are triggered 
normally . 

Any actions performed to comply with a 
clearance issued through the ATC facility are 
still interpreted by GT-CATS, because the 
LOE update necessary for GT-CATS to under- 
stand the actions is still performed. This is 

seconds), time-stamped ATC clearance data, 
and time-stamped operator actions. Examples 
of GT-EFIRT output data are shown in figure 
86. The first data line in figure 86 shows how 
ATC clearances are logged. The second data 
line shows a state-space-data update. The third 
line shows how pilot actions are logged. 

A GT-CATS output file contains time-stamped 
data for each determination GT-CATS makes. 
Examples 8f GT-CATS output file data are 
annotated in figures 87 and 88. These data 
show when each expectation was generated, 
when each action was interpreted, and the 
results. These data also include the current 
state of DUO (i.e., all the activities that are 
active) at the time when GT-CATS interprets 
an action. The fifteen types of pilot actions 
that GT-CATS interprets are shown in table 
13. 

~ 

h 
done by allowing the experimenter to input, 40477 1114.62 atc-oomMd ?RAP-= 

t -- 
ATC 

first, the required LOE modifications, and sec- 
ond, the text of the clearance. 

time sump 

4 
1114.62 atc-m- TRAF-SFCG + z c'*srana clsarance idantiller 

aircnft sUta dmta 

/ 
codes for 

time sump *rmedl.ncw*d modes 
upd.1. 

+ + A  
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0 0 0 4000 18000.00 314.00 1299.00 78453.83 0 0 4 5 0 
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40488 1114.80 6096 prsh-sp3-se-sw 6082 5090 5089 6084 5092 4056 
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t init-&- ' tenrtn and Vnav-spd-clinw 

n t . n k n n d w r u l o n m  
oa) 

t 
I . " P L l d C l a  
L w n d - p w  

current sIr.p..d when Figure 87. Example GT-CATS output data. 1114.80 W-bLm 293. m767 C- speed intervention initiate 

time sump 

sclion identifier (corrssponda 
l o  push-apd-sol-aw) 

Figure 86. Example GT-EFIRT output data. 

Data collection 
Data are collected in files output by both GT- 
EFIRT and GT-CATS. The GT-EFIRT output 
files include state space data (output every five 
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Figure 88. More example GT-CATS output 
data. 

Table 13. Detectable actions in GT-CATS. 

1 .  push-tsp-sw (push thrust select panel switch) 

2. push-ap-cmd-mode-sw (push Autopilot Command 
mode switch) 

3. push-ah-hold-sw (push Altitude Hold switch) 

4. push-hdg-sel-sw (push Heading Select switch) 

5. dial-mcp-hdg (dial MCP heading) 

I 6. push-hdg-hold-sw (push Heading Hold switch) I 

9. dial-mcp-vs (dial MCP vertical speed) 

r l0 .  vush-mcv-spd-sw (vush MCP Speed switch) I 
1 1 .  push-fl-ch-sw (push Flight Level Change switch) 

12. push-vnav-sw (push Vertical Navigation switch) 

13. dial-mcp-ias (dial MCP indicated airspeed) 

14. push-spd-sel-sw (push Speed select switch) 

15. dial-mcv-alt (dial MCP altitude) I 

Experimental configuration 
Figure 89 depicts the experimental configura- 
tion used in the evaluation. The experimenter 
acted as Air Traffic Control, and monitored 
the operation of GT-CATS and GT-EFIRT. 
The subject pilot's activities were audio and 
video recorded. Data were recorded via com- 
puter; GT-EFIRT simulator data were recorded 
on one SparcStation and GT-CATS output 
datat.were recssded on the other. As noted 
above, GT-EFIRT data include the values of 
the relevant simulator state data recorded and 
time-stamped every five seconds, along with 
time-stamped ATC clearances. GT-CATS out- 
put data were the hypothesized operator 
actions, detected actions, and explanations for 
actions, all time-stamped with the time they 
were issued. GT-CATS data also included the 
time-stamped ATC clearances and entries 
made by the experimenter indicating whether 
or not explanations produced by GT-CATS 
were correct, insofar as they accurately 
described the mode that a given pilot action 
supported. 
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GT-EFIRT Simulator 
(SparcStation 10) 

GT-CATS & ATC 
(SparcStation 10) 

mics 

Experimenter 

Figure 89. Experimental setup for the GT-CATS evaluation. 

Performance measures 
The GT-CATS evaluation method seeks to 
determine the extent to which GT-CATS 
adequately “tracks” operator actions. Several 
measures are important for assessing the 
effectiveness of GT-CATS for understanding 
the activities of pilots navigating glass cockpit 
aircraft. Generally, these measures reflect GT- 
CATS’ capability to expect pilot actions, and 
its capability to explain detected pilot actions. 
The GT-CATS activity tracking process gives 
rise to two sets of possible outcomes from 
which the measures are derived. One set of 
outcomes results when an action is expected. 
Another set of outcomes, related to the first, 
results when an actual operator action is 
detected. 

Two sets of outcomes that define the measures 
used in the GT-CATS evaluation are shown in 
figure 90. The top of figure 90 depicts the 
outcomes that are possible when an action is 
expected. When the action becomes active in 
DUO, it is expected. It can then be flagged as 
late (possibly missed) or not. An action deter- 
mined to be late can later be detected (if the 
pilot was indeed slow in performing it), in 
which case GT-CATS either explains it cor- 
rectly (letter “A” in figure go), or explains it 
incorrectly (letter “B” in figure 90). It can 
also go undetected if the pilot never performs 
it, or the situation changes such that it is no 
longer expected (letter “(2”). Actions that are 
not flagged late can also go undetected if the 
situation changes such that they are no longer 
expected (letter “F”); if they are detected, 
they may be either explained correctly (letter 
“D”) or explained incorrectly (letter “E’). 

* 

. 
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Correctly 
Explained 

Incorrectly 
Explained 

Detected < Undetected 8 
Flagged Late 

/ 
Correctly 
Explained 

Incorrectly 
EXpiainecE 

Expected Actions 

Detected 

Not Flagged Late u I 

\Undetected @ 

@=@+a Correctly 
/Explained 

/..pected\~ncorrect~y Explained = + 8 

\ Detected Actions 

Unknown 
Correctly Explained 0 

nexpected 

lncovwtlY Explained 6 
\Unexplainable 0 

MisunderstoodActions= @ + 0 + 6 + 0 
Unfulfilled Expectations = 0 + 0 

Figure 90. Possible outcomes from the GT-CATS activity tracking process. 

The middle portion of figure 90 depicts the set 
of outcomes possible for a detected action. A 
detected action may be either expected or 
unexpected. When an expected action is 
detected, it may be either correctly explained 
(letter “G”), or incorrectly explained (letter 
‘“1’). As indicated in figure 90, this branch 
of outcomes essentially ignores whether the 
action was flagged late or not prior to being 
detected, so that “G’ is the sum of “A” and 
“D,” and “H” is the sum of “B” and “E’. 
The definition of a correct explanation is one 
in which GT-CATS explains the action to sup- 
port the task and valid mode selection that the 
pilot actually selects. Any other explanation is 

incorrect. In other words, only when GT- 
CATS explains an action to support a valid 
mode selection, and only when the valid mode 
selection is the one that the pilot actually 
chooses, does GT-CATS correctly explain the 
action. As an example of an expected action 
that is incorrectly explained, consider a situa- 
tion where the pilot is expected to set the MCP 
altitude to setuplengage VNAV, and the pilot 
indeed sets the altitude, so that the action is 
explained to support the expectation. But, then 
the pilot chooses FL CH mode instead. The 
fact that FL CH mode was chosen instead of 
VNAV invalidates the explanation that the 
altitude was set in support of VNAV mode. 
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As noted above, figure 90 shows how the out- 
comes possible when GT-CATS generates an 
expectation are related to the outcomes possi- 
ble when an action is detected. When an action 
is detected, it is either correctly explained or 
incorrectly explained, regardless of whether 
GT-CATS flagged it late prior to detecting it. 
Thus, the sum of correctly explained actions 
flagged late, and those not flagged late is the 
number of correctly explained detected 
act ions. 

Figure 90 also provides insight into what it 
means when an action is misunderstood by 
GT-CATS. As shown at the bottom of figure 
90, misunderstood actions are those that are 
incorrectly explained, unknown with reference 
to the current subphase of the OFM-ACM 
active in DUO, incorrectly explained through 
the revision process, or unexplainable through 
the revision process (“H’ + “I” + “K” + 
“L”). Note that actions that are not explain- 
able via the revision process (“L”) may in 
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This definition is unambiguous, because the 
mode that is engaged in the controlled system 
is inspectable; a difference in the mode selec- 
tion used as part of the explanation as com- 
pared to the valid mode engaged in the aircraft 
indicates that the explanation is incorrect. 

The middle portion of figure 90 also shows 
the set of outcomes that can arise when GT- 
CATS does not expect a detected pilot action. 
If an action was not expected, then GT-CATS 
either cannot find an instance of it in the cur- 
rently active subphase, in which case the action 
is unknown (letter “I” in figure 90), or GT- 
CATS subjects the action to the revision proc- 
ess. Upon application of the revision process, 
the action may either be correctly explained 
(letter “J”), incorrectly explained (letter 
“K”), or the revision process may fail to gen- 
erate an explanation for the action (letter 
“L”). Again, the explanation attained through 
the revision process is correct only if the 
action supports a mode selection that is 
engaged or becomes engaged as a result of the 
action. 

fact be operator errors, so GT-CATS is in fact 
correct in not understanding them. Additional 
analysis of such actions is discussed in detail in 
the next chapter. Actions that GT-CATS 
expects but never detects, whether flagged as 
late or not, are unfulfilled expectations (“C” 
+ “F”). To find out whether such expecta- 
tions went unfulfilled as a result of errors of 
omission, additional analysis (also discussed in 
the next chapter) is needed. 

Collectively, these outcomes serve to define a 
set of measures for assessing GT-CATS’ activ- 
ity tracking capabilities. By examining data to 
determine how it breaks down into these cate- 
gories, the overall effectiveness of GT-CATS 
can be quantified. In addition to the quantita- 
tive measures, subjective indications of the 
realism, reasonableness, and representativeness 
of the GT-EFIRT simulator and the experi- 
mental scenarios were also collected via a post- 
questionnaire, as described in the next chapter. 
These data are important for establishing that 
GT-CATS activity tracking process was evalu- 
ated in a realistic supervisory control environ- 
ment. Overall, the GT-CATS evaluation sought 
to show that a majority of pilot actions were 
understood, and that, although expectations 
are correct a majority of the time, the GT- 
CATS revision process makes an important 
contribution to explaining pilot actions. 

. 

Summary 
The GT-CATS evaluation sought to assess how 
well GT-CATS expects and explains pilot 
actions. Ten type-rated pilots from a major 
carrier each flew five experimental scenarios. 
Data from the GT-EFIRT simulator and GT- 
CATS were collected via computer, and the 
experimental sessions were audio- and video- 
taped. In addition to demonstrating GT- 
CATS’ effectiveness in tracking pilot activities, 
the evaluation was expected to show the 
effectiveness of the revision process in 
explaining unexpected pilot actions. 



. 

7. Results 

Introduction 
Effective activity tracking entails successful 
prediction and explanation of operator activi- 
ties in real time. The results of the GT-CATS 
empirical evaluation presented in this chapter 
describe in detail GT-CATS’ activity tracking 
performance. The evaluation is based on the 
data and assessments defined in figure 90. GT- 
CATS “understands” an action when it 
explains it to support a task that, in turn, 
supports a pilot’s mode selection. GT-CATS 
either explains actions using prior expecta- 
tions, or through the revision process. 

On the other hand, GT-CATS “misunder- 
stands” actions in four ways. First, the revision 
process may fail to explain the action (this is 
the desired outcome if the action is in error). 
Second, GT-CATS may be unable to locate the 
action in the currently active subphase of the 
OFM-ACM. Third, an expectation may lead to 
an incorrect explanation, and, fourth, the revi- 
sion process may explain an action incor- 
rectly. GT-CATS explains actions incorrectly 
if it incorrectly associates a pilot action with a 
task in DUO that does not support the 
currently active mode. 

This chapter first provides a macro-analysis of 
the data. The macro-analysis summarizes GT- 
CATS’ predictive and explanatory perform- 
ance. The above definitions are then used as 
the basis for a “micro-analysis” of the data. 
The purpose of the micro-analysis is to cate- 
gorize each misunderstanding on the part of 
GT-CATS. For example, one facet of the 
micro-analysis identifies actions that are in fact 
errors. These data are in turn useful in identi- 
fying enhancements to GT-CATS that address 
specific classes of misunderstandings. This 
chapter presents enhancements to the GT- 
CATS OFM-ACM and processing scheme to 

remediate several classes of misunderstandings 
identified in the micro-analysis. 
The chapter then describes the results of the 
questionnaire given pilots to assess the realism, 
reasonableness, and representiveness of the 
evaluation scenarios and the GT-EFIRT simu- 
lator. Finally, the chapter discusses differences 
in the number and types of actions pilots per- 
formed across scenarios. The overall results 
presented here are tabulated in Appendix B; 
data on detected pilot actions are graphed in 
Appendix C. 

Overall results 
Figure 91 shows the overall results of the GT- 
CATS empirical evaluation. The results 
indicate that, with minor adjustments, GT- 
CATS can correctly explain 94% of the 2,089 
pilot actions observed in the study. GT- CATS 
expected and correctly explained 5 1 % of pilot 
actions. It successfully applied the revision 
process to explain an additional 28% of pilot 
actions. Pilot ‘errors’ accounted for 2% of 
unexplained actions, minor adjustments would 
enable GT-CATS to explain I3%, and further 
research is necessary to explain 6%. 

Unexwcted 

Expected and 
Correctly 
Explalned 

51X 

Pilot ‘Errors‘ 

Further Adjustments 

Needed 
6% 

Research 13% 

Figure 9 1. Overall results of the GT-CATS 
empirical evaluation. 
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Predictive capabilities of GT-CATS 
Although GT-CATS expected more than half 
of pilot actions, the revision process was 
nonetheless instrumental in explaining 28% of 
pilot actions. Figure 92 shows the predictive 
performance of GT-CATS. Specifically, it 
shows the numbers of actions that GT-CATS 
expected and did not expect, and the number 
of expectations for pilot actions that pilots did 
not subsequently perform. The results indicate 
that GT-CATS expects more actions than not, 
and generates far fewer expectations that are 
not fulfilled. 
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Unfulfilled expectations are the result of either 
the situation changing, such that current 
expectations are by replaced by new ones, or 
pilots choosing a different mode than 
expected, such that they performed 
unexpected actions rather than meeting 
expectations. The results indicate that most of 
the time unexpected actions are “extra” 
actions that pilots perform when they transi- 
tion between modes or adjust target values in 
situations where these actions are not required. 
Pilots apparently perform such actions seeking 
to exploit some perceived advantage of an 
alternative mode. 
As figure 93 shows, GT-CATS’ revision proc- 
ess facilitated correct explanations for a 
majority of action types. For two thirds of the 
action types, GT-CATS correctly explained at 
least 75% of pilot actions. 

- 

. 

Figure 92. Predictive performance of GT- 
CATS. 
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Pilot ‘errors’ 
The overall results show that 2% of actions 
were pilot ‘errors.’ In making this determina- 
tion, it is a prerequisite to define what consti- 
tutes an error. First, the errors identified 
through micro-analysis are those actions that 
are either incorrect because they represent a 
procedural step performed out of order or an 
attempt to engage an invalid mode, or because 
the aircraft already transitioned to a new mode 
configuration in which the action was unneces- 
sary. Thus, the errors included here are errors 
of commission. (Only one error of omission 
was recorded in the study: a failure to engage 
HDG HOLD before takeoff.) Furthermore, 
GT-CATS correctly explained ‘errors’ that 
involved setting target values on the MCP to 
have been set with the wrong value. Because 
these actions were, in fact, explained, they are 
not included here. 

Figure 94 shows those actions identified as 
pilot ‘errors,’ although none can be consid- 
ered threatening to flight safety. The greatest 
number of errors involved the push-vnav-sw 
action; the vast majority resulted from pilots 
attempting to engage VNAV as part of a pro- 
cedure following autopilot CMD engagement, 
when in fact the aircraft had already transi- 
tioned to capture the cleared altitude. Some 
pilots did not notice the mode transition to 
ALT CAP, and attempted to engage VNAV 
anyway. Another prevalent error involved 
attempting to engage VNAV or FL CH without 
first setting a new altitude on the MCP. Other 
errors were actions inappropriate for the 
engaged mode, or pressing the wrong mode 
engagement switch. 

Enhancements/adjustments to GT-CATS 
Minor adjustments identified by the micro- 
analysis of outcomes would enable GT-CATS 
to explain all but 6% of pilot actions. Figure 
95 shows the additional percentages of each 
action type explainable with adjustments. 

Access to the next subphase 
The first adjustment would enable GT-CATS 
to explain actions that are represented in 

subphases of the OFM-ACM other than the 
currently active subphase. If a pilot performs 
an action slightly before GT-CATS switches to 
the subphase in which the action is repre- 
sented, GT-CATS cannot locate a corre- 
sponding action in DUO. Thus, as imple- 
mented, GT-CATS cannot explain the action. 
In the evaluation, pilots sometimes started con- 
figuring the autoflight system and adjusting 
target values before 1,OOO feet AGL;these 
actions are not represented until the climb-to- 
3000-ft subphase (which becomes active at 
1,000 feet AGL). This processing error can be 
corrected by allowing GT-CATS’ action 
manager access to the subphase immediately 
following the current subphase. 

- 

OFM-ACM enhancements to explain heading 
adjustments 
A second adjustment involves minor additions 
to the OFM-ACM to correct a model error. 
The additions enable GT-CATS to explain 
MCP heading adjustments pilots make during 
LNAV use, which are devoted to lining up the 
magenta line on the HSI that shows the MCP- 
selected heading with the LNAV route. 
Keeping the heading aligned with the LNAV 
route helps pilots monitor LNAV operation. 
These actions constitute a significant fraction 
(approximately 36%) of actions that GT- 
CATS did not explain; because no dial-mcp- 
hdg actions are modeled to support LNAV 
mode usage, GT-CATS revision process fails 
to explain these actions. 
Figures 96 and 97 show two modifications to 
the OFM-ACM proposed to enable GT-CATS 
to explain MCP heading adjustments made 
during LNAV operation. Figure 96 shows the 
addition of a dial-mcp-hdg action to support 
monitoring LNAV turns; figure 97 shows the 
addition of a dial-mcp-hdg action to support 
monitoring the programmed LNAV route. 
Although unverified, these adjustments to the 
model structure would most likely enable GT- 
CATS to associate heading adjustments with 
instances of actions in DUO during LNAV 
operation. 

’ 
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Figure 95. Additional actions explainable with minor adjustments to GT-CATS. 

setup-lat-Profile 
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I 
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Figure 96. Addition of dial-mcp-hdg action to support the mon-lnav-turn-crs subtask. 

setup-lat-profile I 
enc- lnav Hpush-lnav-sw 
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Figure 97. Addition of dial-mcp-hdg action to support the mon-lnav-crs subtask. 
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setup-eng-vnav 

dial-mcp-alt actually 
performed in support of 

evidenced by subsequent 
unexpected FL CH switch 
press 

4-setup-eng-f I-ch, as 

Figure 98. Example of incorrect explanation of dial-mcp-alt action. 

OFM-ACM adjustments to explain altitude 
settings 
Another model error that can be corrected 
with a minor modification to the OFM-ACM 
would enable GT-CATS to explain nearly all 
of the dial-mcp-alt actions detected in the 
study (see figure 95). These actions constitute 
15% of actions GT-CATS does not correctly 
explain as implemented (either following an 
expectation, or by the revision process). 
Altitude settings are presently modeled as part 
of the “setup/engage” task for each vertical 
mode that pilots can manually engage. Figure 
98 shows how an altitude adjustment expected 
in support of VNAV is incorrectly explained 
to support VNAV when, in fact, the pilot per- 
formed the action in preparation to use FL 

CH. Because pilots set the MCP altitude when- 
ever a new cleared altitude is issued by ATC, 
altitude settings may be better modeled as a 
task separate from the engagement of a par- 
ticular mode. Figure 99 shows the proposed 
modification to the OFM-ACM; grey nodes 
indicate how altitude settings are modeled in 
GT-CATS’ present implementation. The 
modified OFM-ACM structure, however, 
removes the ambiguity that leads to incorrect 
explanations for dial-mcp-alt actions. A simi- 
lar modification may also enable GT-CATS to 
better understand speed adjustments; however, 
speed adjustments are more tightly linked to 
the use of a particular mode, so such a modifi- 
cation may be unsuitable to faithfully model 
speed adjustment tasks. 
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Figure 99. Modeling altitude settings independent of mode. 

Other enhancements 
The remaining actions that GT-CATS can 
explain with small modifications result from 
situations similar to those described above. 
One pilot who engaged HDG HOLD mode 
after using HDG SEL to turn onto the cleared 
heading accounted for the misunderstood 
push-hdg-hold-sw actions. This usage was not 
modeled in GT-CATS’ OFM-ACM-a model 
error, although the usage was highly 
unorthodox. 

GT-CATS revised some actions incorrectly 
due to ambiguities similar to those that caused 
GT-CATS to explain dial-mcp-alt actions 
incorrectly. For example, speed may be 
adjusted using the MCP in both ALT CAP and 
ALT HOLD modes. Which mode did the 
action in fact support? A second group of 
incorrect revisions resulted when pilots 
attempted to start a descent before the assigned 
top-of-descent point-a condition for switch- 
ing from cruise phase to the descent phase. In 
these cases, GT-CATS incorrectly revised 
push-vnav-sw actions to support a change of 

cruise altitude (i.e., a step descent), instead of 
the actual descent. Again, this processing error 
could be corrected by allowing GT-CATS 
access to the next phase. 

6% of pilot actions recorded in‘the GT-CATS 
evaluation were not explained, and require 
further research. A variety of additional 
enhancements are planned as the subject of 
such research. These enhancements are 
described in the next chapter. 

Results of a post-experimental 
questionnaire 
After completing the five experimental 
scenarios, each subject pilot was asked a series 
of thirteen general questions about the reason- 
ableness, realism, and representativeness of the 
GT-EFIRT simulator and the experimental 
scenarios (table 14). The questions called for 
responses on a Likert scale, with 1 being “very 
bad,” “very different,” or “very infre- 
quently,” and 7 being “very good,” “very 
similar,” and “very frequently,” depending 
on the question; 4 was the median response. 
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Table 14. Post-experimental questionnaire. 

1. Rate the training you received. 

2. How similar was operating the simulator to the real flying task? 

3. Rate the overall reasonableness, realism, and representativeness of the scenarios. 

4. Rate the overall reasonableness, realism, and representativeness of the ATC clearances used in 
the scenarios. 

5. Rate the overall reasonableness, realism, and representativeness of the simulator Automated 
Flight Control System (AFS and FMS). 

6. Rate the overall reasonableness, realism, and representativeness of the simulator AFS. 

7.  Rate the overall reasonableness, realism, and representativeness of the simulator FMS, given its 
limited functionality. 

8. Rate the overall reasonableness, realism, and representativeness of VNAV mode operation. 

9. Rate the overall reasonableness, realism, and representativeness of LNAV mode operation. 

10. Rate the overall reasonableness, realism, and representativeness of ALT CAP mode operation. 

11. Rate the overall speed control performance of the simulator. 

12. How easy was it for you to verbalize your intended action? 

13. How frequently did you want to use a method not supported by the simulator? 

14. General Comments: 

The results of the questionnaire indicate that, 
on the whole, the GT-EFIRT simulator is rea- 
sonable, realistic, and representative. General 
comments also indicated that the GT-EFIRT 
simulator and experimental scenarios are gen- 
erally good. Two results, in particular, deserve 
mention. First, pilots gave good ratings to 
VNAV mode, as implemented in GT-EFIRT. 
This is important because poor VNAV per- 
formance might have led pilots to select it less 
often than they otherwise would. Second, 
pilots indicated that GT-EFIRT supported the 
navigation methods they would normally use 
to comply with clearances such as those issued 
in the study. This is also important because 

. 

pilots were able to select modes as they would 
in the actual aircraft. 

The averaged responses for the questionnaire 
are shown in Figure 100. High ratings indicate 
positive performance for all but question 13, 
where a low rating is indicative of positive 
performance. Figure 100 shows that the 
responses to all questions were, on average, 
positive. Thus, 757/767 pilots in both the 
formal evaluation and the “pilot” studies that 
preceeded it agreed that GT-EFIRT allowed 
navigation behavior comparable to that found 
in actual aircraft. 

-i 
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Figure 100. Average responses to the post-experimental questionnaire (n=lO). 

Pilot mode usage differences 
The GT-CATS evaluation revealed variations 
in the number and type of actions pilots per- 
formed. For example, pilots 3, 4, and 7 per- 
formed a greater number of actions, and used 
a wider variety of modes than did pilots 2, 6, 
and 9. As an example of such differences, 
figures 101 and 102 depict the explanatory 
performance of GT- CATS for pilots 3 and 6, 
respectively. Pilot 3 used more modes than did 
pilot 6. The results for pilot 3 are representa- 
tive of results for other pilots who used a 
“browsing” approach to select 
modes-selecting one mode, then immediately 
selecting another instead. 

This behavior apparently reflected the desire 
of some pilots to explore the functionality of 
the GT-EFIRT simulator in the process of 
complying with the scenario clearances; at 
times, however, the behavior resulted from an 

inappropriate initial mode selection. As with 
pilot 3, GT-CATS misunderstood more actions 
of pilots who “browsed” among available 
modes. For purposes of the evaluation, such 
actions were not considered errors; only 
actions meeting the error definitions set forth 
earlier were investigated as such. 

Mode usage differences across 
scenarios 
Differences in performance across scenarios 
were less pronounced. Such differences pri- 
marily reflected the length of the LNAV route, 
whether clearances called for deviations from 
the LNAV route, the number and spacing of 
scenario clearances, and the presence or 
absence of crossing restrictions. Differences 
also arose from supplementary clearances 
issued via the GT-CATS ATC facility, in 
addition to clearances specified in the design 
of each scenario. 
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modifications.) Overall, supplementary -ATC 
clearances accounted for 18% of the total 
number of ATC clearances issued during the 
study. 

Micro-anal y sis 
A micro-analysis of the data from the GT- 
CATS evaluation was performed to provide a 
fine-grained assessment of GT-CATS 
performance. 
The micro-analysis entailed rerunning GT- r 

CATS with the experimental data and identi- 
fying the reasons behind individual activity 
tracking outcomes. The micro-analysis catego- 
rizes each unfulfilled expectation, incorrect 
explanation, unexpected action, incorrect revi- 
sion, unexplained action, and unknown action, 
to separate those resulting from implementa- 
tion-dependent aspects of GT-CATS and GT- 

8 0  EFIRT from those deserving further research. 
7 0  r&OG E.& m a -  For example, the micro-analysis confirmed 

that unfulfilled expectations resulted from a 
change in the situation, an alternative mode 
selection, or a pilot omission-a11 cases in 
which normative expectations are not met by 
pilot actions. Similarly, the micro-analysis 
identified misunderstood actions that were 

I I I analysis was instrumental in producing the 
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Figure 10 1. Average numbers of actions per- 
formed by subject 3 for all scenarios (error 
bars indicate one standard deviation). 
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Summary 
The GT-CATS empirical evaluation showed 
that, overall, GT-CATS predicts and explains 
pilot activities effectively. GT-CATS success- 
fully predicted and explained over half of the 

Figure 102. Average numbers of actions per- 
formed by subject 6 for all scenarios (error 
bars indicate one standard deviation). , 

2,089 actions detected in the study. Further- 
more, the GT-CATS revision process was 
instrumental in explaining approximately 36% 
of the actions that GT-CATS explained 
successfully. This result demonstrates the 
importance of the revision process in tracking 
the activities of pilots using multiple modes. 

Supplementary clearances were added during 
some scenarios to make small modifications to 
the route, to ensure later clearances were trig- 
gered appropriately. Of supplementary clear- 
ances, approximately 79% involved modifica- 
tions to the lateral profile-primarily modifi- 
cations to heading to allow for a better route 
intercept heading. Approximately 34% 
involved modifications to the vertical profile. 
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8. Conclusions and Further 
Research 
This chapter summarizes the contributions of 
GT-CATS research. In addition, it posits 
research areas that would enhance or extend 
GT-CATS. 

Conclusions 
GT-CATS extends research on intent infer- 
encing in several ways. First, it provides data 
on the effectiveness of a methodology for 
activity tracking in a complex system. Specifi- 
cally, data are presented for airline pilots per- 
forming realistic mode management tasks in 
the context of realistic flight scenarios. 
Second, GT-CATS research proposes a set of 
theoretical knowledge and processing condi- 
tions which can track operator activities. 
Finally, the research suggests how additional 
knowledge could be captured and utilized 
within the proposed framework. 

GT-CATS contributes four theoretical insights. 
First, it establishes conditions on the types of 
knowledge that must be available in a domain 
in order to build a representation to track op- 
erator activities. Detailed information on the 
state of the controlled system, the state of the 
control automation, and internal variables used 
by the automation is required. This informa- 
tion is represented in GT-CATS’ state space. 
Because this knowledge must be available in a 
form that supports computation, GT-CATS 
requires that the controlled system is an engi- 
neered system from which current state infor- 
mation is directly obtainable. 
Second, knowledge about the goals of the 
operator must also be available in a form that 
affords comparison of the system state infor- 
mation with current goals. GT-CATS repre- 
sents knowledge about operator goals in its 
limiting operating envelope. Again this knowl- 
edge must be available in a form that supports 
computation. In the glass cockpit domain, for 
example, such information is available via 
programmed flight plan information con- 
tained in the Flight Management System. 

Amendments to the programmed flight plan 
required by Air Traffic Control are available 
via datalink technology. 

A third type of knowledge concerns standard 
operating procedures and methods operators 
use to meet the systems goals and manage the 
operation of the controlled system. This 
knowledge is obtained from operator training 
curricula and the structure of the control 
a u t a m a b .  0the.r engineered domains have 
comparable well-defined goals and operating 
procedures to fulfill them (e.g., satellite 
ground control systems, manufacturing 
systems, and air traffic control systems). 

Given that these types of knowledge are avail- 
able in a domain, GT-CATS research demon- 
strates a means of organizing the knowledge to 
track operator activities in complex systems. 
Specifically, GT-CATS research shows that an 
enhanced Operator Function Model-the 
OFM-ACM-an effectively represent knowl- 
edge about an operator’s mode management 
task. At the top of the OFM-ACM hierarchy, 
knowledge is decomposed into phases and 
subphases of system operation, and the func- 
tions required for each subphase. Below the 
function level, the OFM-ACM represents 
knowledge about how control options pro- 
vided by modes allow the operator to perform 
various control tasks. These tasks are decom- 
posed into subtasks and, in turn, into operator 
actions needed to accomplish them. 

The third contribution of GT-CATS research 
specifies how to use domain knowledge to 
support the inferencing required for activity 
tracking. ’ Inferencing creates additional 
requirements on the organization of knowl- 
edge about the operator’s task. In particular, 
function-level operator activities represented in 
the OFM-ACM must be uniquely determinable 
using knowledge in the state space and limit- 
ing operating envelope. Thus, by identifying 
the functions applicable in the current operat- 
ing context, the structure of the OFM-ACM 
identifies viable control options (modes). 
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Another contribution is the use of context 
specifiers. Context specifiers serve as a mecha- 
nism for transforming knowledge about the 
state of the controlled system and control 
automation, along with knowledge about cur- 
rent operator goals as encapsulated in the lim- 
iting operating envelope, into activation con- 
ditions for nodes in the OFM-ACM. These 
conditions determine when a particular 
operator activity is expected. 

Context specifiers provide an alternative to 
script-based inferencing. By acting as activa- 
tion conditions for nodes in the OFM-ACM, 
they specify relationships among activities in 
the OFM-ACM. For example, an operator 
activity represented in the OFM-ACM (e.g., 
engage VNAV) may have as a condition a 
context specifier that results from the effect of 
a previous activity (e.g., set MCP altitude). 
Thus, rather than explicitly specifying the 
ordering of actions using a script, context 
specifiers provide a mechanism by which 
actions are flexibly ordered according to the 
current operating context. 

GT-CATS research also proposes an 
inferencing process. GT-CATS demonstrates 
that context-specific knowledge can be used to 
predict operator activities. The revision process 
allows a prediction to be revised based on 
updated information when operator activities 
that support alternative methods (modes) for 
carrying out the required function are 
executed. 

Finally, GT-CATS demonstrates a method for 
instantiating, processing, and evaluating the 
OFM-ACM to predict and interpret operator 
actions. By evaluating GT-CATS in the con- 
text of the glass cockpit, using type-rated 
pilots, this research establishes activity tracking 
as a viable approach to interpreting pilot mode 
usage activities. The GT-CATS empirical 
evaluation quantifies GT-CATS’ activity 
tracking capabilities in terms of possible out- 
comes. GT-CATS effectively predicts the 
mode a pilot will use in the current context, 
and explains supporting actions as supporting 

it 51% of the time. GT-CATS’ revision proc- 
ess interprets an additional 28% of actions as 
supporting alternative modes to accomplish 
the required control functions. Overall, with 
minor enhancements to the OFM-ACM and 
GT-CATS’ processing scheme, GT-CATS can 
interpret 94% of pilot actions. Thus, the 
evaluation establishes the strengths of GT- 
CATS, and indicates directions for further 
research. 

Enhancements and Suggestions for 
Further Research 
The remainder of this chapter highlights some 
additional enhancements to GT-CATS that 
appear promising. Chapter I11 described how 
Woods et al.’s (ref. 11) characterization of the 
factors that impact operators of complex 
systems applies to modal systems. To 
effectively choose modes, operators weigh 
their knowledge of the characteristics of the 
modes, attentional resources, and strategic 
factors in the current operating context. The 
context-specific information GT-CATS uses to 
predict mode selections reflects the informa- 
tion requirements of the modes (e.g., to use 
the VNAV mode, a vertical profile must be 
programmed in the Flight Management 
System). One area in which in GT-CATS 
could be usefully enhanced, therefore, is to 
implement additional state variables and 
update the state space more frequently. 

First, including predictive information in both 
the state space and limiting operating envelope 
will improve the ability of GT-CATS to more 
accurately predict operator activities. For 
example, the micro-analysis of the current data 
indicates that if GT-CATS’ state space 
includes predictive information, GT-CATS 
might better understand operator actions that 
depend on the capability of the automation to 
achieve a desired state of the controlled system 
within a particular time interval. For example, 
in the glass cockpit domain, predictive infor- 
mation could be used to activate context speci- 
fiers that indicate whether a selected altitude 
and/or airspeed can be achieved in time to 
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meet a restriction. Such predictive information 
is often available internally to the automation. 

Second, more explicitly modeling operator 
workload may also improve GT-CATS’ pre- 
dictive ability. The OFM-ACM provides this 
capability by explicitly modeling cognitive 
and perceptual actions, such as monitoring the 
altimeter to ensure that the desired altitude is 
reached. The micro-analysis in the current 
experiment showed that as pilots became, 
busier they chose lower levels of automation to 
reduce their cognitive workload. 

Third, temporal factors that underpin the 
revision process warrant examination. The 
micro-analysis in the current experiment 
suggests that the revision process could be 
improved if better information about the time 
window during which an action can be 
reasonably interpreted is available. Informa- 
tion about when to execute the revision proc- 
ess for a particular action might be included in 
the OFM-ACM. 

Beyond improvements to GT-CATS itself, 
further research should explore applications of 
activity tracking. First, GT-CATS would be 
useful for interpreting pilot navigation activi- 
ties needed to comply with new ATC automa- 
tion. This application requires that that the 
OFh4-ACM include additional pilot activities 
(e.g., descents that comply with automation- 
derived ATC directives, in addition to present 
descent methods). 

This would enable researchers and pilots alike 
to visualize the task or evaluate proposed pro- 
cedures. Second, GT-CATS can help under- 
stand other flight deck areas, such as non- 
nominal operations. Such applications are 
expected to result in future enhancements to 
the underlying architecture of GT-CATS. 

Other applications should focus on the use of 
output from GT-CATS as a source of knowl- 
edge f a  operatar’s assistants and intelligent 
tutors. Aiding systems could use GT-CATS to 
provide intelligent assistance, by offering 
advice, reminders, or alerts regarding 
unexpected activities. GT-CATS’ OFM-ACM 
is also suitable as the student and expert 
models required by an intelligent tutoring 
systems. Predictions for mode selections 
provide expert knowledge; GT-CATS’ 
revision process enables alternative mode 
selections to be explored. The OFM-ACM can 
also model student knowledge. Such research 
may involve the development of a “buggy” 
OFM-ACM that represents common operator 
errors in using modes of automation, as well as 
operator activities required in abnormal 
operating conditions. One such effort is in 
progress (ref. 15). 

In conclusion, GT-CATS research demon- 
strates a viable methodology for predicting 
and interpreting operator activities in complex 
systems. Along with earlier research efforts, 
GT-CATS serves as the basis for important 
insights into the application of activity track- 
ing. Ultimately, it is hoped that this research 
may have a positive impact on the safe and 
efficient operation of complex systems of the 
future. 
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4 

APPENDIX A: GRAPHICAL DEPICTION OF GT-CATS OFM-ACM 

T I 

Conditions 

Phase 1eV.l: 
1. curront-phase climb in-progress 
2. current-phase cruiso in-progress 
3. currant-phase descent in-progress 

8ubpha.r lrvrlr 
4.  acrft-state alt above-origin-apt 
5. acrft-stat. abs-alt at-or-above-1000 
6. acrft-state abs-alt at-or---3000 
7. current-phaso cruise in-progress 

8. current-phase cruise in-progress 

9. curront-phase doscont in-progress 

10. current-phase descent in-progress 

& aircraft-position more-than-5-miles-to top-of-descurt 

aircraft-position less-than-5-milos-to top-of-descent 

& aircraft-position more-than-5-miles-to ond-of-descent 

& aircraft-position less-than-5-milos-to er~d-of-doscant 
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6 

setuplengage monitorladjust 
HDG SEL HDG SEL tur 

perform FD 
HDG SEL tur engage 

HDG HOLD 
11  

runction level: 
1. acrft-state alt below-limits 
2. acrft-state hdg outside-limits 
3. acrft-state hdg within-limits 

Modo Selection level: 
4.  afs-state cmd-mode fd 
5. afs-state cmd-mode fd 
6. ais-state cmd-ntoda fd 

Task 1rV.l: 
7. afs-state cmd-mode fd 
8. afs-state roll-engd not-hdg-sel 
9. afs-state roll-angd Mg-sal 
10. afs-state roll-engd Mg-sal 
11. afs-state roll-engd not-Mg-hold 
12. afs-state roll-angd hdg-hold 

136 



. 

- 
Function lmvml: 
1. 

nod. 

3. 
a .  

k 
& 
k 
& 

4.  
k 
k 
& 

5 .  
k 
k 
c 

6. 
k 
L 

acrft-stat. alt blow-limits 

smlmction 1-1: 

fms-stat. vmrt-profilm not-progxmd 
ais-stat. ad-modo ad 
acrft-stat. alt mrm-thm-aOOO-frol-tgt 
afs-stat. pitch-ongd not-vs 

fms-stat. vmrt-profilo prow& 

a f ~ - ~ t a t ~  ad-pod. id 

afs-stat. pitch-m-d not-alt-cap-rqd-alt 

afS-St8t. 0d-h. ad 
afs-stat. tsp clb 
afs-stato pitch-mwd not-alt-cap-rqd-alt 
--stat. vmrt-profilm not-progd 
.f.-.t.t. d-pod.  ad 
acrft-stat. alt lmss-than-2000-trotgt 
afs-stat. pitch-m-d not-alt-cap-rqd-alt 
afs-stat. mcp-alt within-limits 
afs-~tat. &-mod. ad 
afs-stat. pitch-.& .lt-CW-rqd-alt 

- -  
Task l m l :  1 0 .  acrft-.tat. mbs-alt at-or-rba-1000 
7. acrft-stat. ab.-alt at-or-abovm-1000 e --stat. vort-profilm progrrd 

& --stat. vmrt-profilm-intcpt p r o u d  8. afS-Stlt. --pod* td 
9. afs-~tat~ athr -ad  Mt-fl-ch n+ -- 
10. afs-statm athr-md tl-Ch afs-stat. r o l l - d  rmv 
11. acrft-stat. mbs-alt at-or-rborr-1000 21. afs-stat. pitch-& a1t-c- 

11. acrft-stat. abn-alt at-or-abovm-1000 & fms-8t.t. vut-profilm pronxmd 
fms-stat. vut-profilm-intcpt prownd 

afs-stat. r o l l - d  r m v  

k fms-stat. vmrt-profilm prognd 
or c fmn-stat. vmrt-profilo-intcpt p m g r d  

or 
la. ais-stat. pitch-mngd not-rmv afs-stat. r o l l - d  m r v  

k afs-StatO pitch-arud IlOt-mV 23. af8-Stat. athr-*IIgd Spd 
13. afS-Statm pitch-md .P.V 
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climb to 0 3000 n 

I 

V 

HDG HOLD arm LNAV 

mnction level: 
1. acrft-state hdg within-limits 

Mode Selection 
2. afs-state 
3. fms-state 

& afs-state 
& afs-state 
& afs-state 

4.  fms-state 
& afs-state 

5. fms-state 
& afs-state 
& afs-state 

1.v.1: 
d - m o d .  fd 
lat-profile not-progrmd 
cma-mode cmd 
roll-ongd hdg-.el 
mcp-hdg within-limits 
lat-profile prognad 
c m d - d e  cmd 
lat-profile not-proprmd 
crdl-mode d 
roll-engd not-hdg-sel 

Task level: 
6. afs-state 
7. afs-state 
8. afs-state 
9. fme-state 

& afs-state 

af e-state 
10. afs-state 

& afs-state 
11. afs-state 
12. afs-state 
13. afs-state 
14. fme-stat. 

& afs-state 

afs-state 

or 

or 

roll-engd not-hdg-hold 
afs-state d - m o d e  fd 

lat-profile-intcpt progrmd 
wp-hdg within-limits 

roll-engd nOt-lMV 

roll-armed lnav 
roll-engd not-lnav 
roll-armed not-lnav 
roll-engd lnav 
roll-engd not-hdg-hold 
roll-engd hdg-hold 
lat-profile-iatcpt progrmd 
roll-engd not-lnav 

roll-armed lnav 
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autoflight turn onto hold 
head ing  heading 

1 

arm LNAV 

Function level: 
1. acrft-state M g  outside-limits 

W e  salection 
2. afs-state 
3. fms-state 

& afs-state 
4. fme-state 

& afs-state 

Ta8k IOVOl: 
5. afm-state 
6. afs-state 
7. afs-state 
8 .  fm-state 

& afs-state 

afa-state 
9. af8-state 
10. afs-state 

& afs-state 
11. afs-state 

or 

level : 
&-mode fd 
lat-profile not-progrmd 
d-mode cpld 
lat-profile progimd 
cmd-mode cmd 

roll-engd not-hdg-sal 
roll-egd Mg-sol 
roll-engd not-hdg-sal 
lat-profile-intcpt proOrmd 
roll-engd not-lnav 

roll-armed lnav 
roll-engd Mg-sal 
roll-engd not-1nav 
roll-armed not-lnav 
roll-engd 1 M V  

139 



hold 

Rrnction level: 
1. acrft-state abs-alt at-or-above-1000 
2. acrft-state abs-alt at-or-above-1000 

Task level: 
3. acrft-state abs-alt at-or-above-1000 
4.  acrft-state abs-alt at-or-above-1000 
5. acrft-state abs-alt at-or-above-1000 

c afs-state mcp-spd outside-limits 
& afs-state pitch-engd not-alt-cap 

6. acrft-state abs-alt at-or-above-1000 
& afs-state tap not-clb 

7. afs-state cmd-modo fd 
or 

afs-state cmd-mode cmd 
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cruise w 
hold 

?unction level: 
1. acrft-state Ma outside-limits 

Mode Selection level: 
2. fre-state lat-profile not-progrmd 

3. fms-state lat-profile progrPd 
& afs-state d-mode d 

& afs-state 

Task level: 
4. afs-state 
5. afe-state 
6. fma-state 

& afs-state 

af s-Btate 
7. aim-state 

& afs-state 
8. afa-state 

or 

d - m o d e  d 

roll-engd not-hdg-sel 
roll-engd Mg-eel 
lat-profile-intcpt progrnd 
roll-engd not-lnav 

roll-anmd lnav 
roll-engd not-lnav 
roll-armed not-lnav 
roll-ongd lnav 
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hold 

I I 

engage monitor HDG 
HDG HOLD HOLD hold 

Q 

Rrnction level: 
1. acrft-state hag within-limits 

Mode selection 
2. fms-state 

& afs-state 
& afs-state 

3. fm-state 
& afs-state 

4. fm-state 
& afs-state 
& afs-state 

level : 
lat-profile not-progrmd 
roll-engd hdg-sel 
mcp-hdg Withh-lidtS 
lat-profile p r o m  
4 - m o d e  & 
lat-profile not-progrmd 
&-mode crpd 
roll-ongd not-Mg-#el 

Task level: 
5. afs-state 
6. fms-state 

& afs-state 

af s-state 
7. afs-state 

& afs-state 
8. afs-state 
9. afs-state 
10. afs-state 
11. fnu-state 

& afs-state 

af s-state 

or 

or 

mcp-Mg within-limits 
lat-profile-intcpt progrmd 
roll-engd XIOt-lMV 

roll-armed lnav 
roll-engd ZlOt-lMV 
roll-armed nOt-lMV 
roll-engd 1 M V  
roll-engd not-hdg-hold 
roll-engd Mg-hold 
lat-profile-intcpt progrmd 
roll-engd XIOt-lMV 

roll-armed l M V  

. 
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. 

. 

altitude altitude 

- 
-tion 1.~01: 
1. acrft-state alt within-limits 

yod. 8oloction 1-1: 
2. frs-stat. vort-profilr not-progrdl 

& afs-stat. rep-alt outsido-limits 
& afs-stat. cd-w cd 
or 

afs-stat. rep-alt within-limits 
& afs-stat. cad-& c d  
& afs-stat. pitch-md alt-hold 

3. fru-stat. vort-profilo progzd 
& afs-stat. d - m d o  cd 
& afs-stat. pitch-mgd not-alt-hold 

4.  frr-state lat-profile Pot-p- 
& afs-stat. cd-& c d  
& afs-itat. pitch-ongd VI 

Task 1-1: 
5. afs-stat. rep-alt artsido-limits 
6. afs-stat. pitch-ongd alt-hold 
7. afs-stat. athr-ad spd 
8. acrft-stat. abs-alt at-or-abovr-1000 

& fms-stat. vort-profilo p r d  
& fmm-stat. vort-profilo-intcpt progrd 
or 

afm-stat. roll-- vnav 

9. afs-stat. pitch-ongd pot-vnav 
& afs-stat. pitch-& pot-vnav 

10. afs-stat. pitch-mgd vnav-path 
11. fms-stat. vnav-spd-int off 

& --stat. tat-spd outsido-limits 
& afs-stat. pitch-oagd vnav 

--stat. vlrcrv-spd-int on 
or 

& afs-state rep-spd outsido-limits 

& fms-stat. tgt-spd within-limits 
& fms-state mar-spd-int on 
& afs-stat. pitch-mgd vnav 

12. fiu-8tatO 8ChOd-tgt-8pd withhl-limitS 

13. rfm-mtata pitch-- VS 

14. afs-stat. pitch-mgd vs 
15. afs-stat. athr-oagd spd 
16. acrft-stat. ab.-alt at-or-rba*r-1000 

& fnu-stat. vort-profilo progrd 
& fu-state vort-profilo-intcpt progrd 

or 
afa-stat. roll-arnd vnav 
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crulse 

nmction 1-1: 
1. 

Yodo 

2. 
k 
k 

k 
k 

k 

k 
k 

k 
k 

k 

k 

k 

T88k 
6. 
7. 
8. 

3. 

4. 

5 .  

k 
k 

or 

9. 

10. 
& 
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cruise 9 
LNAV turn 

?unction level: 
1. acrft-state M g  outside-limits 

W e  Selection level: 
2. fme-state lat-profile not-progrm8 

3. fme-state lat-profile prourmd 
& afe-state cmd-mode cmd 

& afs-state cmd-mode cmd 
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descent to I 

hnction level: 
1. acrft-state Mg within-limits 

#ode Selection 
2. fm8-state 

& afs-state 
& af8-state 

3. fnu-state 
& af8-state 

4. fnu-mtate 
& afs-state 
& afs-state 

level : 
lat-profile not-progrmd 
roll-engd hdg-ne1 
V - M g  withh-lWt8 
lat-profile progrmd 
--mode cmd 
lat-profile not-progrmd 
d-mode cmd 
roll-engd not-hdg-Bel 
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?unction level: 
1. 

Mode 
2. 

& 
& 
or 

& 
& 

3. 
& 
& 

4. 
& 
& 

Task 
5. 
6. 
7. 
8. 

& 

& 
or 

acrft-state alt within-limits 

select ion 
fms-state 
afs-state 
af 8-state 

af s-state 
af s-state 
af e-state 
€ma-state 
af s-state 
af 8-state 
fms-state 
af s-state 
af s-state 

level: 
af e-state 
afs-state 
afs-state 

level: 
vert-profile not-progrmd 
mcp-alt outside-limits 
d - m o d e  d 

mcp-alt within-limits 
4 - d e  4 
pitch-mggd alt-hold 
vert-profile progrmd 
cmd-&e cmd 
pitch-mggd not-alt-hold 
lat-profile not-progrmd 
&-mode d 
pitch-~pd 98 

mcp-alt outside-limits 
pitch-mggd alt-hold 
athr-engd spd 

acrft-state abs-alt at-or-above-1000 
fms-state vert-profile p r o g d  
fms-state vert-profile-intcpt progrmd 

9. 
10. 
11. 
12. 

& 
& 

or 

13. 

14. 
15. 

& 

& 
& 
or 

& 
16. 

& 
& 
& 

afs-state pitch-engd vs 
afs-state pitch-engd vs 
afs-state athr-engd spd 
acrft-state abe-alt at-or-above-1000 
fms-state 
fms-state 

afs-etate 
afs-state 
af a-state 
afs-state 
fms-state 
fms-atate 
afs-state 

fma-state 
afs-state 
fma-state 
fms-state 
fms-state 
af s-state 

vert-profile progrmd 
vert-profile-intcpt progrmd 

roll-armed vnav 
pitch-engd not-vnav 
pitch-armed not-vnav 

vnav-spd-int off 
pitch-mggd mv-path 

tm-spd outside-limits 
pitch-agd =V 

vnav-spd-int on 

ached-tgt-spd within-limits 
tgt-spd within-limits 
vnav-spd-int on 
pitch-engd vnav 

mcp-spd outside-limitn 

afs-state roll-avd vnav 
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init 0 cruise 

LNAV turn 

m c t i o n  level: 
1. acrft-state M g  outside-limits 

Mode Selection level: 
2. fms-state lat-profile not-progmd 

3. fms-state lat-profile progmd 
P afs-state cmd-mode cmd 

& afm-ntate cmd-mode cmd 
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4 

I 

1 

engage monitor HDG 
HDG HOLD HOLD hold 

v 
?unction level: 
1. acrft-state hdg within-limits 

Mode Selection level: 
2. fms-state lat-profile not-pr- 
I afs-state roll-engd hdg-sel 
& afs-state BICp-hdp within-limits 

3. fms-state lat-profile proprmd 
c afs-state cmd-mode cmd 

4.  fms-state lat-profile not-pr- 
& afs-state and-mode cmd 
& afs-state roll-agd not-hdg-sol 
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Rrnction levol: 
1. acrft-mtate M g  outside-limits 
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hold 

Punction level: 
1. cutrat-phase cruise in-progress 

Task level: 
2 .  currat-phase cruise in-progreS8 
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engage monitor HDG 
HDG HOLD HOLD hold 

?unction level: 
1. acrft-state hag within-limits 

W e  Selection level: 
2. fms-state lat-profile not-progrmd 

& afs-state roll-end hdg-sel 
& afs-state mcp-Mg within-limits 

3. fms-state lat-profile progzmd 
& afs-state ,cmd-mode d 

4 .  fnu-state lat-profile not-progrmd 
& afs-state cmd-mode cmd 
& afs-state roll-engd not-Mg-sel 
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. 

. 

mction level: 
1. acrft-state alt within-limits 

mode Selection 
2. fms-state 

& afs-state 
& afs-state 

afs-state 
& afs-stat. 
& afs-state 

3. fms-stat. 
& afs-atate 
& afs-state 

4. fms-state 
& afs-state 
& afs-atate 

or 

level : 
vert-profile not-progrmd 
mcp-alt outside-limits 
c m a - d m  d 

mcp-alt within-limits 
& - d e  d 
pitch-engd alt-hold 
vert-prof ilm proqrd 
cmd-mode cmd 
pitch-engd.not-alt-hold 
lat-profile not-progrmd 
c m d - d e  cnd 
pitch-engd vs  
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G 2  descent 
VNAV step 

descent 

- - 
arm VNAV 

7 
0 

m c t i o n  level: 
1. acrft-state alt above-limits 

Mode Selection level: 
2. fms-state vert-profile not-progrmd 

& afs-state cmd-mode cmd 
& acrft-state alt more-than-2000-from-tgt 
& afs-state pitch-engd not-vs 
& afs-state pitch-engd not-alt-cap-rqd-alt 

3. fms-state vert-profile progrmd 
& afa-state cmd-mode cmd 
& afs-state tsp clb 
& afs-state pitch-engd not-alt-cap-rqd-alt 

& afs-state cmd-mode cmd 
& acrft-state alt lese-than-2000-from-tgt 
& afe-state pitch-engd not-alt-cap-rqd-alt 

& afs-state cmd-mode cmd 
P afs-state pitch-engd alt-cap-rqd-alt 

4 .  fms-state vert-profile not-progrmd 

5. afs-state mcp-alt within-limits 

154 



descent w 
. 

L 

. 

- 
?unction level: 
1. 

w e  

2. 
& 
& 
& 

& 

& 
& 
& 

3. 

4. 
& 

& 
& 

5 .  
& 
c 

acrft-state alt below-limits 

selection level: 
flu-state art-profile not-progmd 
afs-state cmd-mode cmd 
acrft-state al t  nore-thm-2000-fron-t# 

afs-state pitch-urgd not-alt-cap-rqd-alt 
fu-state art-profile progrmd 
afs-state cmd-mode cmd 
afs-state t89 clb 
afs-state pitch-engd not-alt-cap-rqd-alt 
fu-state vert-profile not-progrmd 
afs-state cmd-mode cmd 
acrft-stat. alt loss-than-20OO-fr~-tgt 
afs-state pitch-engd not-alt-cap-rqd-alt 
afs-state mcp-alt within-limits 
afs-state cmd-modo cmd 

afs-8f.te pitch-engd POt-VII 

af8-8t.te pitch-agd ale-cap-rqd-alt 
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HDG SEL - 
\ \  turn I f 

m c t i o n  level: 
1. acrft-state hdg outside-limits 

#ode Selection level: 
2. fms-state lat-profile not-prop& 

3. fms-state lat-profile progrmd 
& afs-state cnd-mode cmd 

& afs-state c m d - d e  cnd 

. 
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. 

runetion level: 
1. acrft-state M g  within-limits 

laode Selection level: 
2. fms-state lat-profile not-pro& 

& afs-state roll-engd Mg-sal 
& afs-state mcp-hdg within-limits 

3. --state lat-profile progrmd 
& afs-state cmd-mode cmd 

4. fms-state lat-profile not-proprmd 
& afs-state cmd-nmde cnul 
& afs-state roll-engd not-Mg-sal 
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=tion level: 
1. acrft-state alt within-limits 

W e  Selection level: 
2 .  fme-state vert-profile not-proprmd 

& afs-state mcp-alt outside-limits 
& ais-state cmd-mode cmd 
or 

afs-state mcp-alt within-limits 
& afs-state cmd-mode cmd 
& afs-state pitch-engd alt-hold 

3 .  fms-state vert-profile progrd 
& afs-state d - m o d e  cmd 
& afs-state pitch-en# not-alt-hold 

4.  fm-state lat-profile not-progrmd 
& afs-state cmd-mode d 
& afs-state pitch-engd VB 
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. 

. 

- 
mction 10-1: 
1. 

Mod. 
2. 

& 
& 
& 
& 

& 
& 
& 

3. 

4. 
& 
P 
& 

5. 
& 

& 

Task 
6. 

acrft-state alt klor-limits 

Selection 1-1: 
fms-state vort-profile not-progrmd 
afs-state 4 - m o d e  cmd 
acrft-state alt more-than-2000-from-tgt 
afs-state pitCh-Ongd not-vs 
afs-state pitch-engd not-alt-cap-rqd-alt 
fms-state vert-profile progrmd 
afs-state cmd-modo cmd 
afs-state tsp clb 
afs-state pitch-engd not-alt-cap-rqd-alt 
fms-state vert-profile not-progrmd 
rfs-state &-mode 4 
acrft-state alt less-than-2000-from-tgt 
afs-state pitch-ongd not-alt-cap-rqd-alt 
afs-state mcp-alt within-limits 
afs-state 4 - m o d e  cmd 

11. fnu-state vnav-spd-int off 
& fnu-state tm-8pd OUtSide-lhit8 
& afs-state pitch-engd vnav 

fms-state vnav-spd-int on 
or 

& afs-stat. mcp-spd outside-limits 

& fms-state tgt-spd within-limits 
& fnu-state vnav-spd-int on 

13. afs-state pitch-engd not-vs 

14. afs-state pitch-engd vs 
15. afs-state athrrengd not-spd 

12. fnu-state schod-tgt-spd within-limits 

P rf8-8tate pitCh-OXlgd M.V 

& afs-state pitch-engd not-alt-cap 

~~~ 

16. afs-state athr-ongd spd 
17. acrft-state abs-alt at-or-above-1000 afs-state pitch-engd alt-cap-rqd-alt 

levo1 : 
afs-state athr-ongd not-fl-ch 

fms-state vert-profile Progrmd 
& fmn-state vort-profile-intcpt progrmd 
or 7 .  afs-state athr-ongd fl-ch 

8. acrft-state ab.-alt at-or-abmm-1000 afs-stato roll-axmarl VMV 
18. afs-state pitch-ongd alt-cap 

& fms-state vart-profile progzmd vort-profile-intcpt progrmd 19. acrft-state abs-alt at-or-above-1000 
& fms-state vort-profile progrmd 
& fms-state vert-profile-intcpt progrmd or 

or afs-state roll-axmarl vnav 
9. afs-state pitch-engd not-vnav afs-state roll-armed vnav 

20. afs-state athr-engd spd & ais-state pitch-- not-vnav 
10. afs-state pitch-engd vnav 
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Function level: 
1. acrft-state hdg outeide-limits 

Selection loal: 
2. fms-state lat-profile not-progrmd 

3. fms-state lat-profile p r o g d  
P afs-state cmd-mode d 

P afs-state cmd-mode d 
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L 

01 arm LNAV 

?unction level: 
1. acrft-state hdg within-limits 

laode Selection level: 
2. fms-state lat-profile not-proprmd 

& afs-state roll-engd hdg-sal 
& afs-state mcp-hdg within-limits 

3. fms-state lat-profile pragnad 
& afs-state cmd-mode cmd 

4.  fms-state lat-profile not-progrmd 
P afm-state &-mode cmd 
& afs-state roll-agd not-hdg-me1 
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set zero vs 

Function level: 
1. acrft-state alt within-limitm 

m e  Selection levo1: 
2. fms-state vert-profile n o t - p r e  

& afs-mtate mcp-alt outside-limits 
& afs-state cmd-mode cmd 

or 
afs-state mcp-alt within-limits 

& afs-state cmd-de cmd 
& afs-state pitch-end alt-hold 

3. fms-state vert-profile progrmd 
& afs-state cmd-mode cmd 
& afm-state pitch-end not-alt-hold 

4.  fms-state lat-profile not-progrmd 
& afs-state c m d - d e  cmd 
& afs-state pitch-end vs 
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. 

c 

VS descent 

v 
Function level: 
1. 

Mode 
2. 

& 
& 

CI 
& 

3. 
& 

& 
& 

4.  
& 
& 

& 

& 

& 

Task 
6. 
7. 
8. 

5. 

k 

acrft-state alt below-lMts 

"a. afs-state athr-engd fl-ch afs-stat. roll-azmed VMV 
acrft-stat. abs-alt at-or-above-1000 18. afs-stat. pitch-engd a1t-C.p 

, fms-state vert-profile progrmd vert-profile-intcpt Rrogrmd 19. acrft-state abs-alt at-or-8bave-1000 
& fPP.-State VO*-ptOfile progrmd 
& trrm-atate VO*-ptOfih-intcpt or 

afs-state roll-armed vnav or 
afs-state roll-aramd vnav 9. afS-State pitch-engd nOt-mV 

20. afs-stat. athr-angd spa & afS-State pitch-- POt-MaV 
10. ats-state pitch-engd -V 
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164 

..... 

altitude engaged 

..... .... 
....................... -.. 

Task level: 
1. afs-state pitch-engd vs 

Subtaak level: 
2. afs-state pitch-engd OS 

3. afs-state mcp-alt outside-limits 
4.  afs-state mcp-vs outside-limits 
5. afs-state pitch-engd vs 

Action lovel: 
6. afa-state mcp-alt outside-limits 
7. afs-state up-vs outside-limits 
8. afs-state pitch-engd v# 



. 

‘I,.,. .................... altitude .... ....................... 

c -- t... 
{’monitor vS’-*-. 
e.. *ADI annunc ’ 

-*.___.__- 4’ 10 

set zero 
vertical speed P I” .................. dial MCP ...... “I 

‘1. .. v s  ........ ................... 1 1 

v 
Task level: 
1. afs-state pitch-engd not-vs 

2. afs-state pitch-engd vs 
3. afs-state pitch-emgd vs 

& afs-state pitch-engd not-alt-cap 

Subtask level: 
4.  afs-state mcp-alt outside-limits 
5. afs-state mcp-alt within-limits 
6. afs-state pitch-ongd vs 
7. afs-atate pitch-ongd va 

Action 1.v.l: 
8. afs-state mcp-alt outside-limits 
9. afs-stat. mcp-alt within-limits 
10. afs-state pitch-engd vs 
11. afs-state pitch-engd vs 
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,,.,........ a*..... ..... Os-J----*- 

e. .................. e.. 11  -*--*---00 

' dial MCP '*'* monitor VNA+-. 
altitude ..,I <& annunc/ 

1 2  

Task 1.~01: 
1. afs-stat. pitch-engd vnav 
2. afs-stat. pitch-en@ vnav-path 

Subtask lmv.1: 
3. afs-state pitch-.ngd vnav 
4.  afs-state mcp-alt outside-limits 
5. afs-state pitch-ongd vnav 
6. afs-state pitch-on@ vnav 
7. fms-state tgt-alt outside-limits 
8. fms-state tgt-spd outside-lhits 
9. afs-state pitch-engd vnav-path 
10. afs-stat. pitch-an@ vnav-path 

Action 1ev.l: 
11. afs-stat. mcp-alt outsido-lhits 
12. afe-state pitch-engd vnav 
13. afs-state pitch-engd vnav-path 
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e 

...... ....... /-z.-- ..... ,..’ dial MCP . &onitor VN&; 
‘%, altltuda 11 :. PTH innunc I ....................... 19 *---*.----/’ 2 0  

v 
Task 1.V.1: hction 10~01: 
1. afs-stat. pitch-ongd not-vnav 15. afs-stat. mcp-alt outsib-limits 

& afs-state pitch-rrrud not-vnav 16. fm-stat. vort-profilo progrd 
2. afs-stat. pitch-ongd vnav-spd 
3. afs-stat. pitch-.npd vn-v-path 

17. af8-8t.t. m-alt OUt8ide-l~tE 
18. ate-state pitch-mgd VUaV-89d 
19. afs-stat. mcp-alt outsido-limits 

Subtask 1-1: 20. afs-stat. pitch-onad vaav-path 
4. fu-stat. rrrt-profile n0t-p- 
5 .  afs-stat. acp-alt outsido-limits 
6. *-state vort-profilo progrod 

8. afs-stat. mcp-alt outsido-limits 
9. afs-stat. pitch-ongd m V - 8 9 d  
10. afs-stat. pitch-& vnav-89d 
11. afs-stat. pitch-ongd vnav-path 
12. afs-state mcp-alt outddo-l~ts 
13. ais-state pitch-& mV-path 
14. afs-stat. pitch-& vnav-gath 

7. af8-8tatO pitch-& m V - 8 p d  

1 9  
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arm VNAV 

..... ...................... 
9 

monitor 
VNAV armed -&- minitor  *e- --e.. VNAV-., 

:.-armed annunc) 
--**__-e ' 10 

--- 
..... ,"" dial MCP "1 

tu,, ........................... IA S 
1 1  1 2  

1 3  

Task level: 
1. fms-state 

& fms-state 

af 8-state 
2. fm-state 

& fme-state 
& afs-state 

fms-state 
afs-state 

3. fms-state 
& fms-state 
& fms-state 
& afe-state 

or 

or 

Subtask level: 
4 .  afs-state 

& fms-state 
5. afs-state 

& fms-state 
6. fine-state 
7. fms-state 

& afs-state 
8. fms-state 

& fms-state 

vert-profile progrmd 
vert-profile-intcpt progrmd 

roll-armed vnav 
vnav-spd-int off 
tgt-spd OUtSide-lwtS 
pitch-agd wv 

vnav-spd-int on 

ached-tgt-spd within-limits 
tgt-spd within-limits 
vnav-epd-int on 

mCp-Spd OUtside-l~tS 

pitch-agd m v  

roll-armed not-vnav 
vert-profile-intcgt progrnd 
roll-armed vnav 
vert-profile-intcgt progrmd 
mav-spd-int off 
vnav-spd-int on 
mcp-spd outside-limits 
Sched-tgt-spd Within-limitS 
tgt-spd within-limits 

Action level: 

9. afs-state roll-armed not-vMv 
& fms-state vert-profile-intcpt progxmd 

& fms-state vert-profile-intcpt progrmd 
10. afs-state roll-armed vnav 

11. fmrr-atate vnav-spd-int oft 
12. ais-state mcp-spd outside-limitm 
13. fms-state ached-tgt-spd within-limit. 

& fms-state tgt-spd within-limits 
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........ 
; . . - ~ ~ ~ a n n u n c /  ‘b ,.*.. IAS  ,,i ....................... 1 2  1 3  -----*__CI .* 

ALT CAP 

Task level: 
1. afe-state athr-engd epd 
2. afe-state athr-engd not-epd 
3. afs-state pitch-ongd alt-cap 
4 .  afs-state cmd-mode fd 
or 

afs-state cmd-moda cmd 

setuplengage 
SPD mode 

engage 
SPD mode 8 ,..’ .................. push MCP 

‘la,,, SPD switch,..) ...................... 1 4 

CMD mode 

................... 16 

subtask level: 
5. afs-state athr-engd 8pd 
6. afs-state mcp-spd outside-limits 
7. afs-state athr-ongd not-spd 
8. afs-state pitch-engd alt-cap 
9. afs-state pitch--@ alt-cap 
10. afs-state cmd-mode fd 
11. afs-state &-mode cmd 

Action lowrl: 
12. afs-state athr-ongd spd 
13. afe-state mcp-spd outside-limits 
14. afs-state athr-ongd not-spd 
15. afs-state pitch-engd alt-cap 
16. afs-state cmd-mode fd 
17. afs-state cmd-mode cmd 
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engage 

.............. f ..... 
,'.""push LNAV *"I, 

'1. Switch ,,/' 
1 3  

........................ 

LNAV turn 

14  

arm LNAV 

18 

monitor 

Task levelt Action level: 
1. afs-state roll-engd not-lnav 13. fms-state lat-profile progrmd 

& afs-state roll-annul not-lnav 14. afs-state roll-engd lnav 
2. afs-state roll-ongd lnav 15. afs-state roll-engd lnav 
3. afs-state roll-ongd lnav 16. afs-state roll-armed not-lnav 
4.  fms-state lat-profile progrmd 17. afs-state roll-armed lnav 

& afs-state roll-ongd not-lnav 

afs-state roll-armd Inav 
or 

Subtask level : 
5. fm-state lat-profile not-progrmd 
6. fms-state lat-profile progrmd 
7. afn-state roll-engd lnav 
8. afs-stat. roll-engd lnav 
9. afs-state roll-ongd lnav 
10. afs-state roll-engd lnav 
11. afs-state roll-axmod not-lnav 
12. afs-state roll-annul lnav 
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.... ...................... .... 
11  1 2  

Task level: 
1. afs-state roll-engd not-Mg-eel 
2. afs-state roll-engd hdg-sel 
3. afs-state mcp-hdg within-limits 

Subtask level: 
4.  afs-state mcp-Mg outside-limits 
5. afs-state roll-engd not-Mg-sel 
6. afs-state roll-mgd hdg-eel 
7. afs-state mcp-hdg outside-limits 
8. afs-state roll-engd hdg-eel 
9. afs-state roll-engd Mg-se1 
10. afs-state roll-engd Mg-eel 

Aetion level: 
11. afs-state mcp-hdg outside-limits 
12. afs-state mcp-Mg outside-limits 
13. afs-state pitch-engd .alt-hold 
14. afs-state roll-engd hdg-sel 
15. afs-state roll-engd hdg-sel 

. 
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......... ..... 
1 2  

monitor m 
altitude 

HDG HOLD 

,/-*-.*. ......... ........ 
/monitor ALf ---.. ,a' push HDG '*a, 

/--v---* 
honitor ALP-.. 
! HOLD annunc) 

1 5  
-I. .*,,,,--' *. . 

;.+HOLD annunc '$,..HOLD switch.) 
---.----/<3 ....................... 1 4 

'..HOLD annuny 
1 6  -. 

Task level: 
1. afs-stat. mcp-alt outside-limits 
2. afs-stat. pitch-angd alt-hold 
3. afs-state roll-engd not-hdg-hold 
4. afs-state pitch-engd alt-hold 
5. afs-stat. roll-engd hdg-hold 

Subtask 1ev.l: 
6. afs-stat. pitch-urgd alt-hold 
7. afs-atate pitch-engd alt-hold 
8 .  afa-state pitch-engd alt-hold 
9. afs-state pitch-angd alt-hold 
10. af s-state roll-& hdg-hold 
11. afs-state roll-engd hdg-hold 

Action 1.v.1: 
12. afs-state mcp-alt outside-limits 
13. afs-state pitch-ongd alt-hold 
14. afs-state roll-engd not-hdg-hold 
15. afs-stat. pitch-agd alt-hold 
16. afs-state roll-ongd hdg-hold 0 
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. 

t 

....................... 1 5  

adjust MCP 

............... 
/*" dial MCP '' 
I, aitltude ,,,# 

%.. 
"I 

'%. ..................... 1 6  

f 

......... r ....... .......... L... .... .... /--z---*-- 
,I"** dial Mcp"'"., f" dial MCP *"! /monitor FL eft., '.,., altitude ,,) '*,,. I A S  ,pi '.. AD1 annund ....................... ........................ 2 0  *-- -.-----*-.= 2 1  1 9  

Tank level: 
1. afs-statr athr-mgd not-fl-ch 
2. afs-state athr-ongd fl-ch 
3. afs-state athr-engd fl-ch 

Subtask level: 
4.  afs-state mcp-alt outside-limits 
5. afs-state mcp-alt within-limits 
6. afs-state athr-engd fl-ch 
7. afs-etate mcp-alt outside-limits 
8. afs-state mcp-spd outside-limits 
9 .  afe-state athr-ongd fl-ch 

10. afs-state athr-engd fl-ch 
11. afs-state mcp-alt outside-limits 
12. afs-atate mcp-spd outside-limit. 
13. afs-etate a*-engd fl-ch 

Action level: 

14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

afs-state mcp-alt outside-limits 
afs-state mcp-alt within-limits 
afs-state mcp-alt outside-limits 
afs-state mcp-spd outside-limits 
afs-state athr-engd fl-ch 
afs-state mcp-alt outside-limits 
afs-state mcp-spd outside-limit. 
afs-state athr-ongd fl-ch 
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adjust 
pitch P f 00- push yoke ---- -. ‘; 

*.. forward ..’ 
1 0  -I*-__- -0 , --- 

perform FD 
HDG SEL P f .-e- track ----I FD ---*. 

‘,command bars i 
*-. --.____-*~ 

14 

takeoff 

descent 
checklist P {read *.e- checklist’ -*-* -*.. 

items i 
1 2  **-**__-- 0 

perform FD 
HDG HOLD P /’ /--- track -*** FD ---**, 

<.command bars,’ 

1 3  
--***_C_c- , --* 

retract flaps P / 0--- move -*--- flap -*-*., 

% handle_, 
---*-_____s 

16  

command P I(‘*‘ ................. dial MCP (‘8 

‘a.... I A S  ,J’ ..................... 
1 7  

Task 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

& 
tr 

9. 
& 

level : 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
current-phase cruise in-progress 
afs-state roll-engd hdg-hold 
afs-state roll-urgd hdg-sal 
ais-state cmd-mode fd 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
afs-state mcp-epd outside-limits 
afs-state pitch-engd not-alt-cap 
acrft-state abs-alt at-or-above-1000 
afs-state tsp not-clb 

Action 1~1~01: 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

18. 
& 

& 

acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
current-phase cruise in-progress 
afs-state roll-urgd hdg-hold 
afs-stat. roll-engd Mg-sel 
afs-state cmd-mode fd 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-atnnm-1000 
afs-state mcp-spd outside-limits 
acrft-state abs-alt at-or-above-1000 
afs-state tsp not-clb 

set climb 
thrust P t’””’push ............... TSP ‘**I 

..... switch ,,i ....................... 
1 8  

. 
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APPENDIX B: EMPIRICAL EVALUATION RESULTS 

. .  
i i  
v ) v )  OVERALL RESULTS Total 2 2 

Detected Actlonr (G+H+I+J+K+L) 2089 5 0  5 0  

Expected and Detected Actlonr (G+H) 1107 4 8  4 7  

Expect& ACtiOM F l a w  Late (A&) 53 0 0 

Adions Correctly Explained Via Revision (J) 595 0 0 

Actions Expected. Detected, and Conectly Explained (G - A+O) 1069 48 47 
A c I i m  Expected. Detected. and Incorrectly Exp(ained (H I B+E) 38 0 0 

Unexpected and Detected Actlonr (I+J+K+L) 982 2 3 

Actions Incorrectly Explalnad Vla Rbs ion  (K) 51 0 0 
Actions Unable to be ElcplalW Via RevWon (L) 329 1 0 
Actions Unknown to Current OFM-ACM Subphase (I) 7 1 3  

Unfulfilled Expectations (C+F) 
Unfulfilled Expe~taUons Flagged Late (C) 

317 1 0 
73 1 0 

Mlrunderrtood Actions (H+I+K+L) 425 2 3 

99 535 23 92 

1 8 3 1 4  o 20 
118 313 0 20 
0 1 0 0  
7 1 5 0 1  

81 221 23 7 2  
75 65 4 57 
1 0 0 0  
5 155 18 15 
0 1 1 0  

8 3 7 2 7  
3 5 0 0  

6 157 19 1 5  

1 2 1  2 7  2 170 183 349 3 6  341 

0 0 0 0 0 1 1 8 1 6 5 2 6  251 
0 0 0 0 0 118 165 26 214 
0 0 0 0  0 0 0 0 3 7  
0 0 0 0  0 4 1 6 1  9 

1 2 1  2 7  2 170 6 5  1 8 4 1 0  9 0  
0 9 8 0 117 36 155 10 59 
0 0 0 0  0 5 1 9 0 2 6  
I 1  12 19 2 53 24 9 0 5 
0 0 0 0  0 0 1 0  0 

3 0 0 23 0 52 132 38 14 
1 0  0 1 0 18 2 1 1 9  4 

1 1 2 1 9  2 53 2 9  29 0 6 8  
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APPENDIX C: GRAPHS OF DETECTED ACTIONS DATA 

Overall Results 
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